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CHAPTER 1

Introduction

Welcome to the modred project!

This is an easy-to-use and parallelized library for computing modal decompositions and reduced-order models.

Parallel implementations of the proper orthogonal decomposition (POD), balanced POD (BPOD), dynamic mode
decomposition (DMD), and Petrov-Galerkin projection are provided, as well as serial implementations of the Observer
Kalman filter Identification method (OKID) and the Eigensystem Realization Algorithm (ERA). modred is applicable
to a wide range of problems and to nearly any type of data.

For smaller and simpler datasets, there is a Matlab-like interface. For larger and more complicated datasets, you can
provide modred with classes and functions to interact with your data.

This work was supported by grants from the the National Science Foundation (NSF) and the Air Force Office of
Scientific Research (AFOSR).
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CHAPTER 2

Why modred?

modred’s a good choice for beginners, experts, experimentalists, and computationalists from many fields. The main
advantages of modred are summarized below. If you don’t know Python, it’s a terrific programming language with
similarities to Matlab.

Ease of use

For smaller and simpler data, often only a single function call with a Matlab-like interface is needed. For larger and
more complicated data, there is a high-level object-oriented interface. The code is written-to-be-read, open source,
and well documented. In almost all cases, modred can be run in parallel (MPI) with no changes to the code.

Several algorithms included

Parallel implementations of the proper orthogonal decomposition (POD), balanced POD (BPOD), dynamic mode
decomposition (DMD), and Petrov-Galerkin projection are provided, as well as serial implementations of the Observer
Kalman Filter Identification method (OKID) and the Eigensystem Realization Algorithm (ERA). It is easy to switch
between methods.

modred can be easily extended to other methods you might like to use.

Applicable to your data

For the common case of data stacked in arrays, there are simple, Matlab-like, functions to use. For larger and more
complicated data, you can provide classes and functions that interface with your data format. These functions should
be written with no parallel consideration; modred does the parallelization for you. It is also possible to call existing
functions in other languages such as C/C++, Fortran, Java, and Matlab with tools like Cython, SWIG, f2py, and
mlabwrap, thus eliminating the need to translate existing code into Python.

Computational speed

The library efficiently orchestrates calls to numpy functions and/or functions that you provide, with little added over-
head. If Python’s speed limitations become problematic, they can be bypassed by calling compiled code using tools
like Cython, SWIG, and f2py.

Further, it is parallelized for a distributed memory architecture using MPI and the mpi4py module. The scaling of
speedup/processors is better-than-linear up to several hundred processors, if not more.

Certain methods, such as the ERA and OKID, are typically not computationally demanding and are thus only imple-
mented in serial.

5
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Reliable

Each individual function is unit tested independently and thoroughly, making modred results trustworthy. Furthermore,
modred has already been used to analyze and model a variety of complicated, real-world datasets, with great success.

Limitations

The biggest limitation is for datasets so large that it is impossible to have three vector objects in one node’s memory
at the same time. By design, modred’s parallelization scheme doesn’t break up individual pieces of data for you, i.e.
it doesn’t do domain decomposition for you. However, modred could be extended so that you can provide parallelized
functions, allowing arbitrarily large data. If you’re curious about this, contact Brandt Belson and Jonathan Tu at
modred-discuss@googlegroups.com. For now, a work-around is to use “fat” nodes with large amounts of memory.
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CHAPTER 3

Installation and requirements

Mandatory:

1. Python 2 (>2.6, tested for 2.7) or Python 3 (>=3.3), http://python.org.

2. Relatively new version of Numpy (>1.6, tested for 1.10), http://numpy.scipy.org.

Optional:

1. For parallel execution, an MPI implementation and mpi4py, http://mpi4py.scipy.org.

To install:

[sudo] python setup.py install

To be sure it’s working, run the unit tests. The parallel tests require mpi4py to be installed:

python -c 'import modred.tests; modred.tests.run()'
mpiexec -n 3 python -c 'import modred.tests; modred.tests.run()'

Please report problems to modred-discuss@googlegroups.com with the following:

1. Copy of the entire output of the installation and tests

2. Python version (python -V)

3. Numpy version (python -c 'import numpy; print numpy.__version__')

4. Your operating system

The documentation is available at http://modred.readthedocs.io.

While unnecessary, you can build the documentation with Sphinx (http://sphinx.pocoo.org). From the modred direc-
tory, run sphinx-build doc doc/build and then open doc/build/index.html in a web browser.
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CHAPTER 4

Tutorial

4.1 Modal decompositions – POD, BPOD, and DMD

This tutorial discusses computing modes from data, using the Proper Orthogonal Decomposition (POD), Balanced
Proper Orthogonal Decomposition (BPOD), and Dynamic Mode Decomposition (DMD). For details of these algo-
rithms, see [HLBR] for POD and BPOD and [TRLBK] for DMD.

The first step is to collect your data. We call each piece of data a “vector” or “vector object”. By vector, we don’t
mean a 1D array. Rather, we mean an element of a vector space. This could be a 1D, 2D, or 3D array, or any other
object that satisfies the properties of a vector space. The examples below build on one another, each introducing new
aspects.

4.1.1 Example 1 – All data in an array

A simple way to find POD modes is:

import numpy as np

import modred as mr

# Create random data
num_vecs = 30
vecs = np.random.random((100, num_vecs))

# Compute POD
num_modes = 5
POD_res = mr.compute_POD_arrays_snaps_method(

vecs, list(mr.range(num_modes)))
modes = POD_res.modes
eigvals = POD_res.eigvals

9
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Let’s walk through the important steps. First, we create an array of random data. Each column is a vector repre-
sented as a 1D array. Then we call the function compute_POD_arrays_snaps_method, which returns the
first num_modes modes as columns of the array modes, and all of the non-zero eigenvalues, sorted from largest to
smallest.

This function implements the “method of snapshots”, as described in Section 3.4 of [HLBR]. In short, it computes the
correlation array 𝑋*𝑋 , where 𝑋 is vecs, then finds its eigenvectors and eigenvalues, which are related to the modes.

4.1.2 Example 2 – Inner products with all data in an array

You can use a weighted inner product, specified here by a 1D array of weights, so that the correlation array is𝑋*𝑊𝑋 ,
where 𝑋 is vecs and 𝑊 contains the inner product weights. The weights also can, more generally, be an array. The
vectors are again represented as columns of an array.

import numpy as np

import modred as mr

# Create random data
num_vecs = 100
nx = 100
vecs = np.random.random((nx, num_vecs))

# Define non-uniform grid and corresponding inner product weights
x_grid = 1. - np.cos(np.linspace(0, np.pi, nx))
x_diff = np.diff(x_grid)
weights = 0.5 * np.append(np.append(

x_diff[0], x_diff[:-1] + x_diff[1:]), x_diff[-1])

# Compute POD
num_modes = 10
POD_res = mr.compute_POD_arrays_direct_method(

vecs, list(mr.range(num_modes)), inner_product_weights=weights)
modes = POD_res.modes
eigvals = POD_res.eigvals

This function computes the singular value decomposition (SVD) of𝑊 1/2𝑋 , and we refer to this as the “direct method”
to distinguish it from the method of snapshots in the previous example. The differences between the two are insignifi-
cant in most cases. For details, see pod.compute_POD_arrays_direct_method().

4.1.3 Example 3 – Vector handles for loading and saving

This example demonstrates vector handles, which are very important because they allow modred to interact with large
and complicated datasets without requiring that all of the vectors be stacked into a single array. This is necessary, for
example, if the data is too large to all fit in memory simultaneously.

The following example computes direct and adjoint modes using Balanced POD (see Chapter 5 of [HLBR]):

import os

import numpy as np

import modred as mr

(continues on next page)
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(continued from previous page)

# Create directory for output files
out_dir = 'tutorial_ex3_out'
if not os.path.isdir(out_dir):

os.makedirs(out_dir)

# Define handles for snapshots
num_vecs = 30
direct_snapshots = [

mr.VecHandleArrayText('%s/direct_vec%d.txt' % (out_dir, i))
for i in mr.range(num_vecs)]

adjoint_snapshots = [
mr.VecHandleArrayText('%s/adjoint_vec%d.txt' % (out_dir, i))
for i in mr.range(num_vecs)]

# Save random snapshot data in text files
x = np.linspace(0, np.pi, 200)
for i, snap in enumerate(direct_snapshots):

snap.put(np.sin(x * i))
for i, snap in enumerate(adjoint_snapshots):

snap.put(np.cos(0.5 * x * i))

# Calculate and save BPOD modes
my_BPOD = mr.BPODHandles(inner_product=np.vdot, max_vecs_per_node=10)
sing_vals, L_sing_vecs, R_sing_vecs = my_BPOD.compute_decomp(

direct_snapshots, adjoint_snapshots)
num_modes = 10
mode_nums = list(mr.range(num_modes))
direct_modes = [

mr.VecHandleArrayText('%s/direct_mode%d' % (out_dir, i))
for i in mode_nums]

adjoint_modes = [
mr.VecHandleArrayText('%s/adjoint_mode%d' % (out_dir, i))
for i in mode_nums]

my_BPOD.compute_direct_modes(mode_nums, direct_modes)
my_BPOD.compute_adjoint_modes(mode_nums, adjoint_modes)

First, we create lists direct_snapshots and adjoint_snapshots. (“Snapshots” is just a common word to
describe vectors that come from time-sampling a system as it evolves.) Each element in these lists is a vector handle
(in particular, an instance of VecHandleArrayText). All vector handles have member functions to load, vec =
vec_handle.get(), and save, vec_handle.put(vec), but themselves use very little memory because they
do not internally contain a vector. modred uses these vector handles to load and save individual vectors only as it needs
them.

All the snapshots are vectors and each is represented as an array, but they are not stacked into a single 2D array.
Ordinarily the snapshots would already exist, for instance as files from a simulation or experiment. Here, we artificially
generate snapshots and write them to file using the put() method.

Next, we compute the BPOD modes. The BPODHandles constructor takes an optional argument
max_vecs_per_node=10, specifying that only 10 vectors (snapshots + modes) can be in one node’s memory
at one time. The function compute_decomp takes lists of vector handles as arguments. In this example, note that
there are 30 direct and 30 adjoint snapshots, so handles are necessary to avoid violating max_vecs_per_node=10.

Similarly, compute_direct_modes and compute_adjoint_modes take lists of handles. The modes are
saved via handle.put() rather than returned, which might require too much memory.

Replacing VecHandleArrayText with VecHandlePickle would load/save all vectors (snapshots and/or
modes) to Python’s binary pickle files. Note that pickling works with any type of vector, including user-defined

4.1. Modal decompositions – POD, BPOD, and DMD 11
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ones, whereas saving to text is only written for 1D and 2D arrays.

To run this example in parallel is easy. The only complication is the data must be saved by only one processor, and
moving these lines inside an if block solves this:

parallel = mr.parallel_default_instance
if parallel.is_rank_zero():

# Loops that call handles.put
pass

parallel.barrier()

After this change, the code will still work in serial, even if mpi4py is not installed. To run this, where the above script
is saved as main_bpod.py, execute:

mpiexec -n 8 python main_bpod.py

It is rare to need to handle parallelization yourself, but if you do, you should use the provided mr.
parallel_default_instance instance as above. Also provided are member functions parallel.
get_rank() and parallel.get_num_procs() (see parallel for details).

If you’re curious, the text files are saved in a format defined in util.load_array_text() and util.
save_array_text().

4.1.4 Example 4 – Inner product function

You are free to use any inner product function, as long as it has the interface value = inner_product(vec1,
vec2) and satisfies the mathematical definition of an inner product (see Interfacing with your data). This ex-
ample uses the trapezoidal rule for inner products on an arbitrary n-dimensional cartesian grid (see vectors.
InnerProductTrapz). The object weighted_IP is callable (it has a special method __call__) so it acts
as the inner product the usual way: value = weighted_IP(vec1, vec2).

import os

import numpy as np

from modred import parallel
import modred as mr

# Create directory for output files
out_dir = 'tutorial_ex4_out'
if not os.path.isdir(out_dir):

os.makedirs(out_dir)

# Define non-uniform grid and corresponding inner product weights
nx = 80
ny = 100
x_grid = 1. - np.cos(np.linspace(0, np.pi, nx))
y_grid = np.linspace(0, 1., ny) ** 2
Y, X = np.meshgrid(y_grid, x_grid)

# Create random snapshot data
num_vecs = 100
snapshots = [

mr.VecHandlePickle('%s/vec%d.pkl' % (out_dir, i))
for i in mr.range(num_vecs)]

if parallel.is_rank_zero():
(continues on next page)
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(continued from previous page)

for i, snap in enumerate(snapshots):
snap.put(np.sin(X * i) + np.cos(Y * i))

parallel.barrier()

# Calculate DMD modes and save them to pickle files
weighted_IP = mr.InnerProductTrapz(x_grid, y_grid)
my_DMD = mr.DMDHandles(inner_product=weighted_IP)
my_DMD.compute_decomp(snapshots)
my_DMD.put_decomp(

'%s/eigvals.txt' % out_dir, '%s/R_low_order_eigvecs.txt' % out_dir,
'%s/L_low_order_eigvecs.txt' % out_dir,
'%s/correlation_array_eigvals.txt' % out_dir,
'%s/correlation_array_eigvecs.txt' % out_dir)

mode_indices = [1, 4, 5, 0, 10]
modes = [

mr.VecHandlePickle('%s/mode%d.pkl' % (out_dir, i)) for i in mode_indices]
my_DMD.compute_exact_modes(mode_indices, modes)

Also shown in this example is the useful put_decomp, which, by default saves the arrays associated with the de-
composition to text files. (See Array input and output.)

Again, this code can be executed in parallel without any modifications.

4.1.5 Example 5 – Shifting and scaling vectors using vector handles

Often vectors contain an offset (also called a shift or translation) such as a mean or equilibrium state, and one might
want to do model reduction with this known offset removed. We call this offset the base vector, and it can be subtracted
off by the vector handle class as shown in this example.

Note that handle.put does not use the base vector; the base vector is only subtracted by handle.get.

You might also want to scale all of your vectors by factors as you retrieve them for use in modred, and this can also
be done by the handle.get function. When using both base vector shifting and scaling, the default order is first
shifting then scaling: (vec - base_vec)*scale.

This examples uses quadrature weights, where each vector is weighted. It also shows how to load vectors in one format
(pickle, via mr.VecHandlePickle) and save modes in another (text, via mr.VecHandleArrayText).

import os

import numpy as np

from modred import parallel
import modred as mr

# Create directory for output files
out_dir = 'tutorial_ex5_out'
if not os.path.isdir(out_dir):

os.makedirs(out_dir)

# Create artificial sample times used as quadrature weights in POD
num_vecs = 100
quad_weights = np.logspace(1., 3., num=num_vecs)
base_vec_handle = mr.VecHandlePickle('%s/base_vec.pkl' % out_dir)
snapshots = [

(continues on next page)
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(continued from previous page)

mr.VecHandlePickle(
'%s/vec%d.pkl' % (out_dir, i),base_vec_handle=base_vec_handle,
scale=quad_weights[i])

for i in mr.range(num_vecs)]

# Save arbitrary snapshot data
num_elements = 2000
if parallel.is_rank_zero():

for snap in snapshots + [base_vec_handle]:
snap.put(np.random.random(num_elements))

parallel.barrier()

# Compute and save POD modes
my_POD = mr.PODHandles(inner_product=np.vdot)
my_POD.compute_decomp(snapshots)
my_POD.put_decomp('%s/sing_vals.txt' % out_dir, '%s/sing_vecs.txt' % out_dir)
my_POD.put_correlation_array('%s/correlation_array.txt' % out_dir)
mode_indices = [1, 4, 5, 0, 10]
modes = [

mr.VecHandleArrayText('%s/mode%d.txt' % (out_dir, i)) for i in mode_indices]
my_POD.compute_modes(mode_indices, modes)

# Check that modes are orthonormal
vec_space = mr.VectorSpaceHandles(inner_product=np.vdot)
IP_array = vec_space.compute_symm_inner_product_array(modes)
if not np.allclose(IP_array, np.eye(len(mode_indices))):

print('Warning: modes are not orthonormal')
print(IP_array)

At the end of this example, we use an instance of the low-level class vectorspace.VectorSpaceHandles to
check that the POD modes are orthonormal. It’s generally not necessary to use this class (or do this check), but if the
need arises, it should be used (instead of writing new code) since it is tested and parallelized.

4.1.6 Example 6 – User-defined vectors and handles

So far, all of the vectors have been arrays, but you may want to apply modred to data saved in your own custom format
with more complicated inner products and other operations. This is no problem at all; modred works with data in any
format! That’s worth saying again: modred works with data in any format! Of course, you’ll have to tell modred
how to interact with your data, but that’s pretty easy. You just need to define and use your own vector handle and
vector objects.

There are two important new features of this example: a custom vector class CustomVector and a custom vec-
tor handle class CustomVecHandle. These definitions may be collected together in a file, for instance called
customvector.py:

import pickle
from copy import deepcopy

import numpy as np

import modred as mr

class CustomVector(mr.Vector):
def __init__(self, grids, data_array):

(continues on next page)
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(continued from previous page)

self.grids = grids
self.data_array = data_array
self.weighted_ip = mr.InnerProductTrapz(*self.grids)

def __add__(self, other):
"""Return a new object that is the sum of self and other"""
sum_vec = deepcopy(self)
sum_vec.data_array = self.data_array + other.data_array
return sum_vec

def __mul__(self, scalar):
"""Return a new object that is ``self * scalar`` """
mult_vec = deepcopy(self)
mult_vec.data_array = mult_vec.data_array * scalar
return mult_vec

def inner_product(self, other):
return self.weighted_ip(self.data_array, other.data_array)

class CustomVecHandle(mr.VecHandle):
def __init__(self, vec_path, base_handle=None, scale=None):

mr.VecHandle.__init__(self, base_handle, scale)
self.vec_path = vec_path

def _get(self):
file_id = open(self.vec_path, 'rb')
grids = pickle.load(file_id)
data_array = pickle.load(file_id)
file_id.close()
return CustomVector(grids, data_array)

def _put(self, vec):
file_id = open(self.vec_path, 'wb')
pickle.dump(vec.grids, file_id)
pickle.dump(vec.data_array, file_id)
file_id.close()

def inner_product(v1, v2):
return v1.inner_product(v2)

Instances of CustomVector meet the requirements for a vector object: vector addition __add__ and scalar
multiplication __mul__ are defined, and the objects are compatible with an inner product function such as
inner_product(v1, v2). Note that CustomVector inherits from a base class mr.Vector. This is not
required, but is recommended, as the base class provides some useful additional methods. The member function
inner_product is useful, but not required. This example also uses the trapezoidal rule for inner products to
account for a 3D arbitrary cartesian grid (vectors.InnerProductTrapz).

The class CustomVecHandle inherits from a base class mr.VecHandle, and defines methods _get and _put,
which load and save vectors from/to Pickle files. Note the leading underscore: the functions get and put (without
leading underscore) are defined in the VecHandle base class, and take care of scaling or subtracting a base vector.

4.1. Modal decompositions – POD, BPOD, and DMD 15
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The methods _get and _put defined here are in turn called by the base class (the “template method” design pattern).
While you don’t need to understand the guts of these base classes, more is covered in Interfacing with your data.

Here’s an example using these classes:

import os

import numpy as np

from modred import parallel
import modred as mr
from customvector import CustomVector, CustomVecHandle, inner_product

# Create directory for output files
out_dir = 'tutorial_ex6_out'
if not os.path.isdir(out_dir):

os.makedirs(out_dir)

# Define snapshot handles
direct_snapshots = [

CustomVecHandle('%s/direct_snap%d.pkl' % (out_dir, i), scale=np.pi)
for i in mr.range(10)]

adjoint_snapshots = [
CustomVecHandle('%s/adjoint_snap%d.pkl' % (out_dir, i), scale=np.pi)
for i in mr.range(10)]

# Create random snapshot data
nx = 50
ny = 30
nz = 20
x = np.linspace(0, 1, nx)
y = np.logspace(1, 2, ny)
z = np.linspace(0, 1, nz) ** 2
if parallel.is_rank_zero():

for snap in direct_snapshots + adjoint_snapshots:
snap.put(CustomVector([x, y, z], np.random.random((nx, ny, nz))))

parallel.barrier()

# Compute and save balanced POD modes
my_BPOD = mr.BPODHandles(inner_product=inner_product)
my_BPOD.sanity_check(direct_snapshots[0])
sing_vals, L_sing_vecs, R_sing_vecs = my_BPOD.compute_decomp(

direct_snapshots, adjoint_snapshots)

# Choose modes so that BPOD projection has less than 10% error
sing_vals_norm = sing_vals / np.sum(sing_vals)
num_modes = np.nonzero(np.cumsum(sing_vals_norm) > 0.9)[0][0] + 1
mode_nums = list(mr.range(num_modes))
direct_modes = [

CustomVecHandle('%s/direct_mode%d.pkl' % (out_dir, i)) for i in mode_nums]
adjoint_modes = [

CustomVecHandle('%s/adjoint_mode%d.pkl' % (out_dir, i)) for i in mode_nums]
my_BPOD.compute_direct_modes(mode_nums, direct_modes)
my_BPOD.compute_adjoint_modes(mode_nums, adjoint_modes)

This example is similar to previous ones, but some aspects are worth pointing out. The call to my_BPOD.
sanity_check() runs some basic tests to verify that the vector handles and vectors behave as expected, so this can
be useful for debugging. After execution, the modes are saved to direct_mode0.pkl, direct_mode1.pkl . . .
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and adjoint_mode0.pkl, adjoint_mode1.pkl. Also, note that the only time the CustomVector class is
used is in generating the “fake” random data: most scripts will only need to deal with the vector handle classes, not
the vectors themselves.

When you’re ready to start using modred, take a look at what types of vectors, file formats, and inner products are
supplied in vectors. If you don’t find what you need, you can define your own vectors and vector handles following
examples like this. Built-in classes like VecHandleArrayText and VecHandlePickle are common cases and
serve as good examples since your own custom vector handle classes will probably resemble them.

As usual, this example can be executed in parallel without any modifications.

4.1.7 Array input and output

By default, put_array and get_array save and load to text files. If you prefer a different format,
you can pass your own functions as keyword arguments put_array and get_array to the constructors.
The functions should have the following interfaces: put_array(array, array_dest) and array =
get_array(array_source). The array argument could be a 1D or 2D array.

4.1.8 References

4.2 Model reduction

4.2.1 Linear reduced-order models

We provide a class to find reduced-order models (continuous and discrete time) by projecting linear dynamics onto
modes (Petrov-Galerkin projection). The governing equation of the full system is assumed to be either continuous
time:

𝜕𝑥(𝑡)/𝜕𝑡 = 𝐴𝑥(𝑡) +𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)

or discrete time:

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) +𝐵𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑥(𝑘)

where 𝑘 is the time step. Here 𝑥 is the state vector. 𝐴, 𝐵, and 𝐶 are, in general, linear operators (often arrays). In
cases where there are no inputs and outputs, 𝐵 and 𝐶 are zero. 𝐴 acts on 𝑥 and returns a vector that lives in the same
vector space as 𝑥. 𝐵 acts on elements of the input space, R𝑝, where 𝑝 is the number of inputs and returns elements of
the vector space in which 𝑥 lives. 𝐶 acts on 𝑥 and returns elements of the output space, R𝑞 , where 𝑞 is the number of
outputs.

These dynamical equations can be projected onto a set of modes. First, approximate the state vector as a linear
combination of 𝑟 modes, stacked as columns of array Φ, and time-varying coefficients 𝑞(𝑘):

𝑥(𝑘) ≈ Φ𝑞(𝑘).

Then substitute into the governing equations and take the inner product with a set of adjoint modes, columns of array
Ψ. The result is a reduced system for 𝑞, which has as many elements as Φ has columns, 𝑟. The adjoint, ( )+, is defined
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with respect to inner product weight 𝑊 .

𝑞(𝑘 + 1) = 𝐴𝑟𝑞(𝑘) +𝐵𝑟𝑢(𝑘)

𝑦(𝑘) = 𝐶𝑟𝑞(𝑘)

where

𝐴𝑟 = (Ψ+Φ)−1Ψ+𝐴Φ

𝐵𝑟 = (Ψ+Φ)−1Ψ+𝐵

𝐶𝑟 = 𝐶Φ

An analagous result exists for continuous time.

If the modes are not stacked into arrays, then the following equations are used, where [ ]𝑖,𝑗 denotes row 𝑖 and column
𝑗.

[Ψ+Φ]𝑖,𝑗 = ⟨𝜓𝑖, 𝜑𝑗⟩𝑊
[Ψ+𝐴Φ]𝑖,𝑗 = ⟨𝜓𝑖, 𝐴𝜑𝑗⟩𝑊

[Ψ+𝐵] = ⟨𝜓𝑖, 𝐵𝑒𝑗⟩𝑊
[𝐶Φ]:,𝑗 = 𝐶𝜑𝑗

𝑒𝑗 is the jth standard basis (intuitively 𝐵𝑒𝑗 is [𝐵]:,𝑗 if 𝐵 is an array.).

The 𝐴, 𝐵, and 𝐶 operators may or may not be available within Python. For example, you may do simulations using
code written in another language. For this reason, modred requires only the action of the operators on the vectors, i.e.,
the products 𝐴𝜑𝑗 , 𝐵𝑒𝑗 , and 𝐶𝜑𝑗 , and not the operators 𝐴, 𝐵, and 𝐶 themselves.

Example 1: Smaller data and arrays

Here’s an example that uses arrays.

import os

import numpy as np

import modred as mr

# Create directory for output files
out_dir = 'rom_ex1_out'
if not os.path.isdir(out_dir):

os.makedirs(out_dir)

# Create random LTI system
nx = 100
num_inputs = 2
num_outputs = 3
num_basis_vecs = 10
A = np.random.random((nx, nx))
B = np.random.random((nx, num_inputs))
C = np.random.random((num_outputs, nx))

# Create random modes
basis_vecs = np.random.random((nx, num_basis_vecs))

# Perform Galerkin projection and save data
LTI_proj = mr.LTIGalerkinProjectionArrays(basis_vecs)

(continues on next page)
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A_reduced, B_reduced, C_reduced = LTI_proj.compute_model(
A.dot(basis_vecs), B, C.dot(basis_vecs))

LTI_proj.put_model(
'%s/A_reduced.txt' % out_dir, '%s/B_reduced.txt' % out_dir,
'%s/C_reduced.txt' % out_dir)

The array basis_vecs contains the vectors that define the basis onto which the dynamics are projected.

A few variations of this are illustrative. First, if no inputs or outputs exist, then there is only 𝐴𝑟 and no 𝐵𝑟 or 𝐶𝑟. The
last two lines would then be replaced with:

A_reduced = LTI_proj.reduce_A(A.dot(basis_vec_array))
LTI_proj.put_A_reduced('A_reduced.txt')

Another variant is if the basis vecs are known to be orthonormal, as is always the case with POD modes. Then, the
Ψ*𝑊Φ array and its inverse are identity, and computing it is wasteful. Specifying the constructor keyword argument
is_basis_orthonormal=True tells modred this array is identity and to not compute it.

Example 2: Larger data and vector handles

Here’s an example similar to what might arise when doing large simulations in another language or program.

import os

import numpy as np

from modred import parallel
import modred as mr

# Create directory for output files
out_dir = 'rom_ex2_out'
if not os.path.isdir(out_dir):

os.makedirs(out_dir)

# Create handles for modes
num_modes = 10
basis_vecs = [

mr.VecHandlePickle('%s/dir_mode_%02d.pkl' % (out_dir, i))
for i in mr.range(num_modes)]

adjoint_basis_vecs = [
mr.VecHandlePickle('%s/adj_mode_%02d.pkl' % (out_dir, i))
for i in mr.range(num_modes)]

# Define system dimensions and create handles for action on modes
num_inputs = 2
num_outputs = 4
A_on_basis_vecs = [

mr.VecHandlePickle('%s/A_on_dir_mode_%02d.pkl' % (out_dir, i))
for i in mr.range(num_modes)]

B_on_bases = [
mr.VecHandlePickle('%s/B_on_basis_%02d.pkl' % (out_dir, i))
for i in mr.range(num_inputs)]

C_on_basis_vecs = [
np.sin(np.linspace(0, 0.1 * i, num_outputs)) for i in mr.range(num_modes)]

(continues on next page)
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# Create random modes and action on modes. Typically this data already exists
# and this section is unnecesary.
nx = 100
ny = 200
if parallel.is_rank_zero():

for handle in (
basis_vecs + adjoint_basis_vecs + A_on_basis_vecs + B_on_bases):
handle.put(np.random.random((nx, ny)))

parallel.barrier()

# Perform Galerkin projection and save data to disk
inner_product = np.vdot
LTI_proj = mr.LTIGalerkinProjectionHandles(

inner_product, basis_vecs, adjoint_basis_vec_handles=adjoint_basis_vecs)
A_reduced, B_reduced, C_reduced = LTI_proj.compute_model(

A_on_basis_vecs, B_on_bases, C_on_basis_vecs)
LTI_proj.put_model(

'%s/A_reduced.txt' % out_dir, '%s/B_reduced.txt' % out_dir,
'%s/C_reduced.txt' % out_dir)

This example works in parallel with no modifications.

If you do not have the time-derivatives of the direct modes but want a continuous time
model, see ltigalerkinproj.compute_derivs_arrays() and ltigalerkinproj.
compute_derivs_handles().

4.2.2 Eigensystem Realization Algorithm (ERA)

See the documentation and examples provided in era.compute_ERA_model() and era.ERA.

4.3 System identification – OKID and ERA

See okid and era.
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CHAPTER 5

Interfacing with your data

The simplest way to use modred is with the Matlab-like functions and 2D arrays. However, sometimes your data is
too large for this. In these cases, there is a high-level object-oriented interface that works with data in any format and
never needs the data stacked into a 2D array. Of course, you’ll need to tell modred how to interact with your data. This
section explains how to do this and provides some mathematical background.

5.1 Vector objects

The building block of the modal decompositions is the vector object. Sets of these vector objects are decomposed
into modes by POD, BPOD, and DMD. Others call these vector objects snapshots, planes of spatial data, fields, time
histories, and many other names. Within modred, “vector” refers to the object you, the user, use to represent your data.
By “vector”, we do not mean a 1D array. We do mean an element of a vector space (technically an inner product
space). You are free to choose any object, from numpy arrays to your own class, so long as it satisfies a few simple
requirements.

The vector object must:

1. Support scalar multiplication, i.e. vector2 = 2.0*vector1.

2. Support addition with other vectors, i.e. vector3 = vector1 + vector2.

3. Be compatible with a user-supplied inner_product(vector1, vector2) function.

Numpy arrays already meet requirements 1 and 2. For your own classes, define the special methods __mul__ and
__add__ for 1 and 2.

You also need an inner product function that takes two vectors and returns a single number. This number can be real
or complex, but may not switch from real to complex depending on the input, i.e., it must be real for all inputs or
complex for all inputs. Your inner product must satisfy the mathematical definition for an inner product:

• Conjugate symmetry: inner_product(vec1, vec2) == numpy.conj(inner_product(vec2,
vec1)).

• Linearity: inner_product(vec1, scalar*vec2) == scalar*inner_product(vec1,
vec2).
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• Implied norm: inner_product(vec, vec) >= 0 with equality if and only if vec is the zero vector.

The two examples we show are numpy’s vdot and the trapezoidal rule in vectors.InnerProductTrapz. It’s
often a good idea to define an inner product function as a member function of the vector class, and write a simple
wrapper. There is an example of this in the tutorial.

The resulting modes are also vectors. We mean this in both the programming sense that modes are vector objects and
the mathematical sense that modes live in the same vector space as vectors.

5.1.1 Base class

We provide a useful base class for all user-defined vectors to inherit from, mr.Vector. It isn’t required to inherit
from it, but encouraged because it defines a few useful special functions and has some error checking. If you’re
curious, take a look at it in the vectors module (click on the [source] link on the right side).

5.2 Vector handles

When the vectors are large, it can be inefficient or impossible to have all of them in memory simultaneously. Thus,
modred only needs a subset of vectors in memory, loading and saving them as necessary. Therefore, you can provide
it with a list of vector handles. These are lightweight objects that in some sense point to a vector’s location, like the
filename where it’s saved. In general, vector handles get a vector from a location and return it, and also put a vector in
a location. That is, they implement this interface:

• Constructor with interface VectorHandle(location).

• A get function with interface vec = vec_handle.get().

• A put function with interface vec_handle.put(vec).

An example would be a constructor that takes a file name as an argument, a get that loads and returns the vector, and
a put that saves the vector to the file name.

One can think of get as loading, but it is more general because get can retrieve the vector from anywhere (though
most often from file). Similarly, one can think of put as saving, but it is more general because put can send the
vector anywhere (though most often to file).

It’s natural to think of a vector handle’s get and put as inverses, but they don’t have to be. For example, it’s
acceptable to load an input vector from one file format and save modes to another file format. However, it does mean
that if one wanted to load the modes, one couldn’t with this vector handle because get assumes a different file format.

Another way to handle the case of different input vector and mode (or any output vector) file formats is to define a
different vector handle class for each. In this case, technically one wouldn’t need a put for the input vector handle
since one never saves to this format. Similarly, one only needs to write a get for the mode vector handle if one wants
to load the modes (for example to plot them).

It’s very important that the vector handles actually be lightweight (use little memory). modred is most efficient when it
uses all of the memory available to have as many vectors in memory as possible. So if vector handles contain vectors
or other large data, then modred could run slowly or stop with “out of memory” errors.

5.2.1 Base class

We provide a useful base class for all user-defined vector handles to inherit from. An example of a user-defined vector
handle that inherits from mr.VecHandle is provided in the tutorial. This isn’t required, but strongly encouraged
because it contains extra functionality. The mr.VecHandle constructor accepts two additional arguments, a base
vector handle base_handle and a scaling factor scale. This allows the get function to retrieve a vector, subtract
from it a base vector (for example an equilibrium or mean state), scale it (for example by a quadrature weight), and
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return the modified vector. The base class achieves this via a get that calls the derived class’s member function _get
and performs the additional operations for base vectors and/or scaling. The base class’s put simply calls _put of the
derived class. Examples are shown in the tutorial.

One might be concerned that the base class is reloading the base vector at each call of get, but this is avoidable. As
long as the base_handle you give each vector handle instance is equal (with respect to ==), then the base vector is
loaded on the first call of get and stored as mr.VecHandle.cached_base_vec, which is used by all instances
of classes derived from mr.VecHandle.

If you’re curious, feel free to take a look at it in the vectors module (click on the [source] link on the right side).

5.3 Checking requirements automatically

First, we encourage you to write your own tests (see module unittest) to be sure your vector object and vector
handle work as you expect. Many classes provide a function sanity_check that checks a few common mistakes
in your vector object addition, scalar multiplication, and inner products. We encourage you to run sanity_check
every time you use modred. We used to call this the idiot_check as motivation to use it; keep that in mind!

5.4 How vector objects and handles are used in modred

The classes POD, BPOD, and DMD have similar interfaces which interact with vectors and vector handles. First,
each has compute_decomp functions that take lists of vector handles, vec_handles, as arguments. Within the
compute_decomp functions, vec = vec_handle.get() is called repeatedly to retrieve vectors as needed.
In fact, compute_decomp does not “know” or “care” what’s inside the vector handles and vectors; only that they
satisfy the requirements.

More information about these methods is provided in the documentation for each class.

5.5 Example

An example of a custom class for vectors and vector handles is shown below:

import pickle
from copy import deepcopy

import numpy as np

import modred as mr

class CustomVector(mr.Vector):
def __init__(self, grids, data_array):

self.grids = grids
self.data_array = data_array
self.weighted_ip = mr.InnerProductTrapz(*self.grids)

def __add__(self, other):
"""Return a new object that is the sum of self and other"""
sum_vec = deepcopy(self)
sum_vec.data_array = self.data_array + other.data_array

(continues on next page)
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return sum_vec

def __mul__(self, scalar):
"""Return a new object that is ``self * scalar`` """
mult_vec = deepcopy(self)
mult_vec.data_array = mult_vec.data_array * scalar
return mult_vec

def inner_product(self, other):
return self.weighted_ip(self.data_array, other.data_array)

class CustomVecHandle(mr.VecHandle):
def __init__(self, vec_path, base_handle=None, scale=None):

mr.VecHandle.__init__(self, base_handle, scale)
self.vec_path = vec_path

def _get(self):
file_id = open(self.vec_path, 'rb')
grids = pickle.load(file_id)
data_array = pickle.load(file_id)
file_id.close()
return CustomVector(grids, data_array)

def _put(self, vec):
file_id = open(self.vec_path, 'wb')
pickle.dump(vec.grids, file_id)
pickle.dump(vec.data_array, file_id)
file_id.close()

def inner_product(v1, v2):
return v1.inner_product(v2)

For an example using this class, see the tutorial in Modal decompositions – POD, BPOD, and DMD.

5.6 Summary and next steps

Summarizing, to use modred on arbitrary data, define

1. A vector object that has:

1. Vector addition (“+”, __add__),

2. Scalar multiplication (“*”, __mul__),

3. Optional: inherits from vectors.Vector.

2. A function inner_product(vec1, vec2).

3. A vector handle class that has:

1. Member function get() which returns a vector handle.
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2. Member function put(vec) where vec is a vector handle.

3. Optionally inherits from vectors.VecHandle. If so, member function names in 1 and 2 change to
_get and _put.

Then you can get started using any of the modal decomposition classes! Before writing your own classes, check out
vectors, which has several common vector and vector handles classes.

For large data, Python’s speed limitations can be bypassed by implementing functions in compiled languages such as
C/C++ and Fortran and accessing them within python with Cython, SWIG, f2py, etc.
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CHAPTER 6

More examples

6.1 Complex Ginzburg-Landau equation

The example examples/main_CGL.py reproduces the computation of the BPOD modes of the linearized Com-
plex Ginzburg-Landau equation, as in [Ilak2010]. The system is relatively small, and so all of the vectors are stacked
into matrices.

6.2 References
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CHAPTER 7

POD

class modred.pod.PODHandles(inner_product=None, get_array=<function load_array_text>,
put_array=<function save_array_text>, max_vecs_per_node=None,
verbosity=1)

Proper Orthogonal Decomposition implemented for large datasets.

Kwargs: inner_product: Function that computes inner product of two vector objects.

put_array: Function to put an array out of modred, e.g., write it to file.

get_array: Function to get an array into modred, e.g., load it from file.

max_vecs_per_node: Maximum number of vectors that can be stored in memory, per node.

verbosity: 1 prints progress and warnings, 0 prints almost nothing.

Computes POD modes from vector objects (or handles). Uses vectorspace.VectorSpaceHandles for
low level functions.

Usage:

myPOD = POD(inner_product=my_inner_product)
myPOD.compute_decomp(vec_handles)
myPOD.compute_modes(range(10), modes)

See also compute_POD_arrays_snaps_method(), compute_POD_arrays_direct_method(),
and vectors.

compute_decomp(vec_handles, atol=1e-13, rtol=None)
Computes correlation array 𝑋*𝑊𝑋 and its eigendecomposition.

Args: vec_handles: List of handles for vector objects.

Kwargs: atol: Level below which eigenvalues of correlation array are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues of correlation array.
Smaller ones are truncated.

Returns: eigvals: 1D array of eigenvalues of correlation array.
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eigvecs: Array whose columns are eigenvectors of correlation array.

compute_eigendecomp(atol=1e-13, rtol=None)
Computes eigendecomposition of correlation array.

Kwargs: atol: Level below which eigenvalues of correlation array are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues of correlation array.
Smaller ones are truncated.

Useful if you already have the correlation array and to want to avoid recomputing it.

Usage:

POD.correlation_array = pre_existing_correlation_array
POD.compute_eigendecomp()
POD.compute_modes(range(10), mode_handles, vec_handles=vec_handles)

compute_modes(mode_indices, mode_handles, vec_handles=None)
Computes POD modes and calls put on them using mode handles.

Args: mode_indices: List of indices describing which modes to compute, e.g. range(10) or [3,
0, 5].

mode_handles: List of handles for modes to compute.

Kwargs: vec_handles: List of handles for vector objects. Optional if when calling
compute_decomp().

compute_proj_coeffs()
Computes orthogonal projection of vector objects onto POD modes.

Returns: proj_coeffs: Array of projection coefficients for vector objects, expressed as a linear com-
bination of POD modes. Columns correspond to vector objects, rows correspond to POD modes.

get_correlation_array(src)
Gets the correlation array from source (memory or file).

Args: src: Source from which to retrieve correlation array.

get_decomp(eigvals_src, eigvecs_src)
Gets the decomposition arrays from sources (memory or file).

Args: eigvals_src: Source from which to retrieve eigenvalues of correlation array.

eigvecs_src: Source from which to retrieve eigenvectors of correlation array.

get_proj_coeffs(src)
Gets projection coefficients from source (memory or file).

Args: src: Source from which to retrieve projection coefficients.

put_correlation_array(dest)
Puts correlation array to dest.

put_decomp(eigvals_dest, eigvecs_dest)
Puts the decomposition arrays in destinations (memory or file).

Args: eigvals_dest: Destination in which to put eigenvalues of correlation array.

eigvecs_dest: Destination in which to put the eigenvectors of correlation array.

put_eigvals(dest)
Puts eigenvalues of correlation array to dest.

30 Chapter 7. POD



modred Documentation, Release 2.0.4.post6

put_eigvecs(dest)
Puts eigenvectors of correlation array to dest.

put_proj_coeffs(dest)
Puts projection coefficients to dest

sanity_check(test_vec_handle)
Checks that user-supplied vector handle and vector satisfy requirements.

Args: test_vec_handle: A vector handle to test.

See vectorspace.VectorSpaceHandles.sanity_check().

modred.pod.compute_POD_arrays_direct_method(vecs, mode_indices=None, in-
ner_product_weights=None, atol=1e-13,
rtol=None)

Computes POD modes using data stored in an array, using direct method.

Args: vecs: Array whose columns are data vectors (𝑋).

Kwargs: mode_indices: List of indices describing which modes to compute. Examples are range(10)
or [3, 0, 6, 8]. If no mode indices are specified, then all modes will be computed.

inner_product_weights: 1D or 2D array of inner product weights. Corresponds to 𝑊 in inner
product 𝑣*1𝑊𝑣2.

atol: Level below which eigenvalues of correlation array are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues of correlation array. Smaller
ones are truncated.

return_all: Return more objects; see below. Default is false.

Returns: res: Results of POD computation, stored in a namedtuple with the following attributes:

• eigvals: 1D array of eigenvalues of correlation array (𝐸).

• modes: Array whose columns are POD modes.

• proj_coeffs: Array of projection coefficients for vector objects, expressed as a linear combination
of POD modes. Columns correspond to vector objects, rows correspond to POD modes.

• eigvecs: Array wholse columns are eigenvectors of correlation array (𝑈 ).

Attributes can be accessed using calls like res.modes. To see all available attributes, use print(res).

The algorithm is

1. SVD 𝑈𝑆𝑉 * = 𝑊 1/2𝑋

2. Modes are 𝑊−1/2𝑈

where 𝑋 , 𝑊 , 𝑆, 𝑉 , correspond to vecs, inner_product_weights, eigvals**0.5, and eigvecs,
respectively.

Since this method does not square the vectors and singular values, it is more accurate than
taking the eigendecomposition of the correlation array 𝑋*𝑊𝑋 , as in the method of snapshots
(compute_POD_arrays_snaps_method()). However, this method is slower when 𝑋 has more rows
than columns, i.e. there are fewer vectors than elements in each vector.

modred.pod.compute_POD_arrays_snaps_method(vecs, mode_indices=None, in-
ner_product_weights=None, atol=1e-13,
rtol=None)

Computes POD modes using data stored in an array, using the method of snapshots.

Args: vecs: Array whose columns are data vectors (𝑋).
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Kwargs: mode_indices: List of indices describing which modes to compute. Examples are range(10)
or [3, 0, 6, 8]. If no mode indices are specified, then all modes will be computed.

inner_product_weights: 1D or 2D array of inner product weights. Corresponds to 𝑊 in inner
product 𝑣*1𝑊𝑣2.

atol: Level below which eigenvalues of correlation array are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues of correlation array. Smaller
ones are truncated.

Returns: res: Results of POD computation, stored in a namedtuple with the following attributes:

• eigvals: 1D array of eigenvalues of correlation array (𝐸).

• modes: Array whose columns are POD modes.

• proj_coeffs: Array of projection coefficients for vector objects, expressed as a linear combination
of POD modes. Columns correspond to vector objects, rows correspond to POD modes.

• eigvecs: Array wholse columns are eigenvectors of correlation array (𝑈 ).

• correlation_array: Correlation array (𝑋*𝑊𝑋).

Attributes can be accessed using calls like res.modes. To see all available attributes, use print(res).

The algorithm is

1. Solve eigenvalue problem 𝑋*𝑊𝑋𝑈 = 𝑈𝐸

2. Coefficient array 𝑇 = 𝑈𝐸−1/2

3. Modes are 𝑋𝑇

where 𝑋 , 𝑊 , 𝑋*𝑊𝑋 , and 𝑇 correspond to vecs, inner_product_weights, correlation_array,
and build_coeffs, respectively.

Since this method “squares” the vector array and thus its singular values, it is slightly less accurate than taking
the SVD of 𝑋 directly, as in compute_POD_arrays_direct_method(). However, this method is faster
when 𝑋 has more rows than columns, i.e. there are more elements in each vector than there are vectors.
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BPOD

class modred.bpod.BPODHandles(inner_product=None, put_array=<function
save_array_text>, get_array=<function load_array_text>,
max_vecs_per_node=None, verbosity=1)

Balanced Proper Orthogonal Decomposition implemented for large datasets.

Kwargs: inner_product: Function that computes inner product of two vector objects.

put_array: Function to put an array out of modred, e.g., write it to file.

get_array: Function to get an array into modred, e.g., load it from file.

max_vecs_per_node: Maximum number of vectors that can be stored in memory, per node.

verbosity: 1 prints progress and warnings, 0 prints almost nothing.

Computes direct and adjoint BPOD modes from direct and adjoint vector objects (or handles). Uses
vectorspace.VectorSpaceHandles for low level functions.

Usage:

myBPOD = BPODHandles(inner_product=my_inner_product)
myBPOD.compute_decomp(direct_vec_handles, adjoint_vec_handles)
myBPOD.compute_direct_modes(range(50), direct_modes)
myBPOD.compute_adjoint_modes(range(50), adjoint_modes)

See also compute_BPOD_arrays() and vectors.

compute_SVD(atol=1e-13, rtol=None)
Computes singular value decomposition of the Hankel array.

Kwargs:

atol: Level below which Hankel singular values are truncated.

rtol: Maximum relative difference between largest and smallest Hankel singular values.
Smaller ones are truncated.

Useful if you already have the Hankel array and want to avoid recomputing it.
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Usage:

my_BPOD.Hankel_array = pre_existing_Hankel_array
my_BPOD.compute_SVD()
my_BPOD.compute_direct_modes(

range(10), mode_handles, direct_vec_handles=direct_vec_handles)

compute_adjoint_modes(mode_indices, mode_handles, adjoint_vec_handles=None)
Computes adjoint BPOD modes and calls put on them using mode handles.

Args: mode_indices: List of indices describing which adjoint modes to compute, e.g. range(10)
or [3, 0, 5].

mode_handles: List of handles for adjoint modes to compute.

Kwargs: adjoint_vec_handles: List of handles for adjoint vector objects. Optional if given when
calling compute_decomp().

compute_adjoint_proj_coeffs()
Computes biorthogonal projection of adjoint vector objects onto adjoint BPOD modes, using direct BPOD
modes.

Returns: adjoint_proj_coeffs: Array of projection coefficients for adjoint vector objects, ex-
pressed as a linear combination of adjoint BPOD modes. Columns correspond to adjoint vector ob-
jects, rows correspond to adjoint BPOD modes.

compute_decomp(direct_vec_handles, adjoint_vec_handles, num_inputs=1, num_outputs=1,
atol=1e-13, rtol=None)

Computes Hankel array 𝐻 = 𝑌 *𝑋 and its singular value decomposition 𝑈𝐸𝑉 * = 𝐻 .

Args: direct_vec_handles: List of handles for direct vector objects (𝑋). They should be stacked
so that if there are 𝑝 inputs, the first 𝑝 handles should all correspond to the same timestep. For instance,
these are often all initial conditions of 𝑝 different impulse responses.

adjoint_vec_handles: List of handles for adjoint vector objects (𝑌 ). They should be stacked
so that if there are 𝑎 outputs, the first 𝑞 handles should all correspond to the same timestep. For
instance, these are often all initial conditions of 𝑝 different adjointimpulse responses.

Kwargs: num_inputs: Number of inputs to the system.

num_outputs: Number of outputs of the system.

atol: Level below which Hankel singular values are truncated.

rtol: Maximum relative difference between largest and smallest Hankel singular values. Smaller
ones are truncated.

Returns: sing_vals: 1D array of Hankel singular values (𝐸).

L_sing_vecs: Array of left singular vectors of Hankel array (𝑈 ).

R_sing_vecs: Array of right singular vectors of Hankel array (𝑉 ).

compute_direct_modes(mode_indices, mode_handles, direct_vec_handles=None)
Computes direct BPOD modes and calls put on them using mode handles.

Args: mode_indices: List of indices describing which direct modes to compute, e.g. range(10) or
[3, 0, 5].

mode_handles: List of handles for direct modes to compute.

Kwargs: direct_vec_handles: List of handles for direct vector objects. Optional if given when
calling compute_decomp().
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compute_direct_proj_coeffs()
Computes biorthogonal projection of direct vector objects onto direct BPOD modes, using adjoint BPOD
modes.

Returns: direct_proj_coeffs: Array of projection coefficients for direct vector objects, expressed
as a linear combination of direct BPOD modes. Columns correspond to direct vector objects, rows
correspond to direct BPOD modes.

get_Hankel_array(src)
Gets the Hankel array from source (memory or file).

Args: src: Source from which to retrieve Hankel singular values.

get_adjoint_proj_coeffs(src)
Gets the adjoint projection coefficients from source (memory or file).

Args: src: Source from which to retrieve adjoint projection coefficients.

get_decomp(sing_vals_src, L_sing_vecs_src, R_sing_vecs_src)
Gets the decomposition arrays from sources (memory or file).

Args: sing_vals_src: Source from which to retrieve Hankel singular values.

L_sing_vecs_src: Source from which to retrieve left singular vectors of Hankel array.

R_sing_vecs_src: Source from which to retrieve right singular vectors of Hankel array.

get_direct_proj_coeffs(src)
Gets the direct projection coefficients from source (memory or file).

Args: src: Source from which to retrieve direct projection coefficients.

put_Hankel_array(dest)
Puts Hankel array to dest.

put_L_sing_vecs(dest)
Puts left singular vectors of Hankel array to dest.

put_R_sing_vecs(dest)
Puts right singular vectors of Hankel array to dest.

put_adjoint_proj_coeffs(dest)
Puts adjoint projection coefficients to dest

put_decomp(sing_vals_dest, L_sing_vecs_dest, R_sing_vecs_dest)
Puts the decomposition arrays in destinations (memory or file).

Args: sing_vals_dest: Destination in which to put Hankel singular values.

L_sing_vecs_dest: Destination in which to put left singular vectors of Hankel array.

R_sing_vecs_dest: Destination in which to put right singular vectors of Hankel array.

put_direct_proj_coeffs(dest)
Puts direct projection coefficients to dest

put_sing_vals(dest)
Puts Hankel singular values to dest.

sanity_check(test_vec_handle)
Checks that user-supplied vector handle and vector satisfy requirements.

Args: test_vec_handle: A vector handle to test.

See vectorspace.VectorSpaceHandles.sanity_check().

35



modred Documentation, Release 2.0.4.post6

modred.bpod.compute_BPOD_arrays(direct_vecs, adjoint_vecs, num_inputs=1, num_outputs=1,
direct_mode_indices=None, adjoint_mode_indices=None, in-
ner_product_weights=None, atol=1e-13, rtol=None)

Computes BPOD modes using data stored in arrays, using method of snapshots.

Args: direct_vecs: Array whose columns are direct data vectors (𝑋). They should be stacked so that if
there are 𝑝 inputs, the first 𝑝 columns should all correspond to the same timestep. For instance, these are
often all initial conditions of 𝑝 different impulse responses.

adjoint_vecs: Array whose columns are adjoint data vectors (𝑌 ). They should be stacked so that if
there are 𝑞 outputs, the first 𝑞 columns should all correspond to the same timestep. For instance, these are
often all initial conditions of 𝑞 different adjoint impulse responses.

Kwargs: num_inputs: Number of inputs to the system.

num_outputs: Number of outputs of the system.

direct_mode_indices: List of indices describing which direct modes to compute. Examples are
range(10) or [3, 0, 6, 8]. If no mode indices are specified, then all modes will be computed.

adjoint_mode_indices: List of indices describing which adjoint modes to compute. Examples are
range(10) or [3, 0, 6, 8]. If no mode indices are specified, then all modes will be computed.

inner_product_weights: 1D or 2D array of inner product weights. Corresponds to 𝑊 in inner
product 𝑣*1𝑊𝑣2.

atol: Level below which Hankel singular values are truncated.

rtol: Maximum relative difference between largest and smallest Hankel singular values. Smaller ones
are truncated.

Returns: res: Results of BPOD computation, stored in a namedtuple with the following attributes:

• sing_vals: 1D array of Hankel singular values (𝐸).

• direct_modes: Array whose columns are direct modes.

• adjoint_modes: Array whose columns are adjoint modes.

• direct_proj_coeffs: Array of projection coefficients for direct vector objects, expressed as
a linear combination of direct BPOD modes. Columns correspond to direct vector objects, rows
correspond to direct BPOD modes.

• adjoint_proj_coeffs: Array of projection coefficients for adjoint vector objects, ex-
pressed as a linear combination of adjoint BPOD modes. Columns correspond to adjoint vector
objects, rows correspond to adjoint BPOD modes.

• L_sing_vecs: Array whose columns are left singular vectors of Hankel array (𝑈 ).

• R_sing_vecs: Array whose columns are right singular vectors of Hankel array (𝑉 ).

• Hankel_array: Hankel array (𝑌 *𝑊𝑋).

Attributes can be accessed using calls like res.direct_modes. To see all available attributes, use
print(res).

See also BPODHandles.

36 Chapter 8. BPOD



CHAPTER 9
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class modred.dmd.DMDHandles(inner_product=None, get_array=<function load_array_text>,
put_array=<function save_array_text>, max_vecs_per_node=None,
verbosity=1)

Dynamic Mode Decomposition implemented for large datasets.

Kwargs: inner_product: Function that computes inner product of two vector objects.

put_array: Function to put an array out of modred, e.g., write it to file.

get_array: Function to get an array into modred, e.g., load it from file.

max_vecs_per_node: Maximum number of vectors that can be stored in memory, per node.

verbosity: 1 prints progress and warnings, 0 prints almost nothing.

Computes DMD modes from vector objects (or handles). It uses vectorspace.VectorSpaceHandles
for low level functions.

Usage:

myDMD = DMDHandles(inner_product=my_inner_product)
myDMD.compute_decomp(vec_handles)
myDMD.compute_exact_modes(range(50), mode_handles)

See also compute_DMD_arrays_snaps_method(), compute_DMD_arrays_direct_method(),
and vectors.

compute_adjoint_modes(mode_indices, mode_handles, vec_handles=None)
Computes adjoint DMD modes and calls put on them using mode handles.

Args: mode_indices: List of indices describing which projected modes to compute, e.g. range(10)
or [3, 0, 5].

mode_handles: List of handles for projected modes to compute.

Kwargs: vec_handles: List of handles for vector objects. Optional if when calling
compute_decomp().
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compute_decomp(vec_handles, adv_vec_handles=None, atol=1e-13, rtol=None,
max_num_eigvals=None)

Computes eigendecomposition of low-order linear map approximating relationship between vector objects,
returning various arrays necessary for computing and characterizing DMD modes.

Args: vec_handles: List of handles for vector objects.

Kwargs: adv_vec_handles: List of handles for vector objects advanced in time. If not provided, it
is assumed that the vector objects describe a sequential time-series. Thus vec_handles becomes
vec_handles[:-1] and adv_vec_handles becomes vec_handles[1:].

atol: Level below which DMD eigenvalues are truncated.

rtol: Maximum relative difference between largest and smallest DMD eigenvalues. Smaller ones
are truncated.

max_num_eigvals: Maximum number of DMD eigenvalues that will be computed. This is en-
forced by truncating the basis onto which the approximating linear map is projected. Computationally,
this corresponds to truncating the eigendecomposition of the correlation array. If set to None, no trun-
cation will be performed, and the maximum possible number of DMD eigenvalues will be computed.

Returns: eigvals: 1D array of eigenvalues of low-order linear map, i.e., the DMD eigenvalues.

R_low_order_eigvecs: Array whose columns are right eigenvectors of approximating low-
order linear map.

L_low_order_eigvecs: Array whose columns are left eigenvectors of approximating low-order
linear map.

correlation_array_eigvals: 1D array of eigenvalues of correlation array.

correlation_array_eigvecs: Array whose columns are eigenvectors of correlation array.

compute_eigendecomp(atol=1e-13, rtol=None, max_num_eigvals=None)
Computes eigendecompositions of correlation array and approximating low-order linear map.

Kwargs: atol: Level below which eigenvalues of correlation array are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues of correlation array.
Smaller ones are truncated.

max_num_eigvals: Maximum number of DMD eigenvalues that will be computed. This is en-
forced by truncating the basis onto which the approximating linear map is projected. Computationally,
this corresponds to truncating the eigendecomposition of the correlation array. If set to None, no trun-
cation will be performed, and the maximum possible number of DMD eigenvalues will be computed.

Useful if you already have the correlation array and cross-correlation array and want to avoid recomputing
them.

Usage:

DMD.correlation_array = pre_existing_correlation_array
DMD.cross_correlation_array = pre_existing_cross_correlation_array
DMD.compute_eigendecomp()
DMD.compute_exact_modes(

mode_idx_list, mode_handles, adv_vec_handles=adv_vec_handles)

Another way to use this is to compute a DMD using a truncated basis for the projection of the approxi-
mating linear map. Start by either computing a full decomposition or by loading pre-computed correlation
and cross-correlation arrays.

Usage:
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# Start with a full decomposition
DMD_eigvals, correlation_array_eigvals = DMD.compute_decomp(

vec_handles)[0, 3]

# Do some processing to determine the truncation level, maybe based
# on the DMD eigenvalues and correlation array eigenvalues
desired_num_eigvals = my_post_processing_func(

DMD_eigvals, correlation_array_eigvals)

# Do a truncated decomposition
DMD_eigvals_trunc = DMD.compute_eigendecomp(
max_num_eigvals=desired_num_eigvals)

# Compute modes for truncated decomposition
DMD.compute_exact_modes(

mode_idx_list, mode_handles, adv_vec_handles=adv_vec_handles)

Since it doesn’t overwrite the correlation and cross-correlation arrays, compute_eigendecomp can be
called many times in a row to do computations for different truncation levels. However, the results of the
decomposition (e.g., self.eigvals) do get overwritten, so you may want to call a put method to save
those results somehow.

compute_exact_modes(mode_indices, mode_handles, adv_vec_handles=None)
Computes exact DMD modes and calls put on them using mode handles.

Args: mode_indices: List of indices describing which exact modes to compute, e.g. range(10) or
[3, 0, 5].

mode_handles: List of handles for exact modes to compute.

Kwargs: vec_handles: List of handles for vector objects. Optional if when calling
compute_decomp().

compute_proj_coeffs()
Computes projection of vector objects onto DMD modes. Note that a biorthogonal projection onto exact
DMD modes is analytically equivalent to a least-squares projection onto projected DMD modes.

Returns: proj_coeffs: Array of projection coefficients for vector objects, expressed as a linear com-
bination of DMD modes. Columns correspond to vector objects, rows correspond to DMD modes.

adv_proj_coeffs: Array of projection coefficients for vector objects advanced in time, expressed
as a linear combination of DMD modes. Columns correspond to vector objects, rows correspond to
DMD modes.

compute_proj_modes(mode_indices, mode_handles, vec_handles=None)
Computes projected DMD modes and calls put on them using mode handles.

Args: mode_indices: List of indices describing which projected modes to compute, e.g. range(10)
or [3, 0, 5].

mode_handles: List of handles for projected modes to compute.

Kwargs: vec_handles: List of handles for vector objects. Optional if when calling
compute_decomp().

compute_spectrum()
Computes DMD spectral coefficients. These coefficients come from a biorthogonal projection of the first
vector object onto the exact DMD modes, which is analytically equivalent to doing a least-squares projec-
tion onto the projected DMD modes.
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Returns: spectral_coeffs: 1D array of DMD spectral coefficients, calculated as the magnitudes of
the projection coefficients of first data vector. The projection is onto the span of the DMD modes
using the (biorthogonal) adjoint DMD modes. Note that this is the same as a least-squares projection
onto the span of the DMD modes.

get_correlation_array(src)
Gets the correlation array from source (memory or file).

Args: src: Source from which to retrieve correlation array.

get_cross_correlation_array(src)
Gets the cross-correlation array from source (memory or file).

Args: src: Source from which to retrieve cross-correlation array.

get_decomp(eigvals_src, R_low_order_eigvecs_src, L_low_order_eigvecs_src, correla-
tion_array_eigvals_src, correlation_array_eigvecs_src)

Gets the decomposition arrays from sources (memory or file).

Args: eigvals_src: Source from which to retrieve eigenvalues of approximating low-order linear map
(DMD eigenvalues).

R_low_order_eigvecs_src: Source from which to retrieve right eigenvectors of approximating
low-order linear DMD map.

L_low_order_eigvecs_src: Source from which to retrieve left eigenvectors of approximating
low-order linear DMD map.

correlation_array_eigvals_src: Source from which to retrieve eigenvalues of correlation
array.

correlation_array_eigvecs_src: Source from which to retrieve eigenvectors of correla-
tion array.

get_proj_coeffs(src, adv_src)
Gets the projection coefficients and advanced projection coefficients from sources (memory or file).

Args: src: Source from which to retrieve projection coefficients.

adv_src: Source from which to retrieve advanced projection coefficients.

get_spectral_coeffs(src)
Gets the spectral coefficients from source (memory or file).

Args: src: Source from which to retrieve spectral coefficients.

put_L_low_order_eigvecs(dest)
Puts left eigenvectors of approximating low-order linear map to dest.

put_R_low_order_eigvecs(dest)
Puts right eigenvectors of approximating low-order linear map to dest.

put_correlation_array(dest)
Puts correlation array to dest.

put_correlation_array_eigvals(dest)
Puts eigenvalues of correlation array to dest.

put_correlation_array_eigvecs(dest)
Puts eigenvectors of correlation array to dest.

put_cross_correlation_array(dest)
Puts cross-correlation array to dest.
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put_decomp(eigvals_dest, R_low_order_eigvecs_dest, L_low_order_eigvecs_dest, correla-
tion_array_eigvals_dest, correlation_array_eigvecs_dest)

Puts the decomposition arrays in destinations (memory or file).

Args: eigvals_dest: Destination in which to put eigenvalues of approximating low-order linear map
(DMD eigenvalues).

R_low_order_eigvecs_dest: Destination in which to put right eigenvectors of approximating
low-order linear map.

L_low_order_eigvecs_dest: Destination in which to put left eigenvectors of approximating
low-order linear map.

correlation_array_eigvals_dest: Destination in which to put eigenvalues of correlation
array.

correlation_array_eigvecs_dest: Destination in which to put eigenvectors of correlation
array.

put_eigvals(dest)
Puts eigenvalues of approximating low-order-linear map (DMD eigenvalues) to dest.

put_proj_coeffs(dest, adv_dest)
Puts projection coefficients to dest, advanced projection coefficients to adv_dest.

put_spectral_coeffs(dest)
Puts DMD spectral coefficients to dest.

sanity_check(test_vec_handle)
Checks that user-supplied vector handle and vector satisfy requirements.

Args: test_vec_handle: A vector handle to test.

See vectorspace.VectorSpaceHandles.sanity_check().

class modred.dmd.TLSqrDMDHandles(inner_product=None, get_array=<function
load_array_text>, put_array=<function save_array_text>,
max_vecs_per_node=None, verbosity=1)

Total Least Squares Dynamic Mode Decomposition implemented for large datasets.

Kwargs: inner_product: Function that computes inner product of two vector objects.

put_array: Function to put an array out of modred, e.g., write it to file.

get_array: Function to get an array into modred, e.g., load it from file.

max_vecs_per_node: Maximum number of vectors that can be stored in memory, per node.

verbosity: 1 prints progress and warnings, 0 prints almost nothing.

Computes Total-Least-Squares DMD modes from vector objects (or handles). It uses vectorspace.
VectorSpaceHandles for low level functions.

Usage:

myDMD = TLSqrDMDHandles(inner_product=my_inner_product)
myDMD.compute_decomp(vec_handles, max_num_eigvals=100)
myDMD.compute_exact_modes(range(50), mode_handles)

The total-least-squares variant of DMD accounts for an asymmetric treatment of the non-time-advanced and
time-advanced data in standard DMD, in which the former is assumed to be perfect information, whereas all
noise is limited to the latter. In many cases, since the non-time-advanced and advanced data come from the same
source, noise could be present in either.
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Note that max_num_eigvals must be set to a value smaller than the rank of the dataset. In other words, if the
projection basis for total-least-squares DMD is not truncated, then the algorithm reduces to standard DMD. For
over-constrained datasets (number of vector objects is larger than the size of each vector object), this occurs
naturally. For under-constrained datasets, (number of vector objects is smaller than size of vector objects), this
must be done explicitly by the user. At this time, there is no standard method for choosing a truncation level.
One approach is to look at the roll-off of the correlation array eigenvalues, which contains information about the
“energy” content of each projection basis vectors.

Also, note that TLSqrDMDHandles inherits from DMDHandles, so certain methods are available, even
though they are not implemented/documented here (namely several put functions).

See also compute_TLSqrDMD_arrays_snaps_method(), compute_TLSqrDMD_arrays_direct_method(),
and vectors.

compute_decomp(vec_handles, adv_vec_handles=None, atol=1e-13, rtol=None,
max_num_eigvals=None)

Computes eigendecomposition of low-order linear map approximating relationship between vector objects,
returning various arrays necessary for computing and characterizing DMD modes.

Args: vec_handles: List of handles for vector objects.

Kwargs: adv_vec_handles: List of handles for vector objects advanced in time. If not provided, it
is assumed that the vector objects describe a sequential time-series. Thus vec_handles becomes
vec_handles[:-1] and adv_vec_handles becomes vec_handles[1:].

atol: Level below which DMD eigenvalues are truncated.

rtol: Maximum relative difference between largest and smallest DMD eigenvalues. Smaller ones
are truncated.

max_num_eigvals: Maximum number of DMD eigenvalues that will be computed. This is en-
forced by truncating the basis onto which the approximating linear map is projected. Computationally,
this corresponds to truncating the eigendecomposition of the correlation array. If set to None, no trun-
cation will be performed, and the maximum possible number of DMD eigenvalues will be computed.

Returns: eigvals: 1D array of eigenvalues of low-order linear map, i.e., the DMD eigenvalues.

R_low_order_eigvecs: Array whose columns are right eigenvectors of approximating low-
order linear map.

L_low_order_eigvecs: Array whose columns are left eigenvectors of approximating low-order
linear map.

sum_correlation_array_eigvals: 1D array of eigenvalues of sum correlation array.

sum_correlation_array_eigvecs: Array whose columns are eigenvectors of sum correla-
tion array.

proj_correlation_array_eigvals: 1D array of eigenvalues of projected correlation array.

proj_correlation_array_eigvecs: Array whose columns are eigenvectors of projected
correlation array.

Note that the truncation level (corresponding to max_num_eigvals) must be set to a value smaller than
the rank of the dataset, otherwise total-least-squares DMD reduces to standard DMD. This occurs naturally
for over-constrained datasets, but must be enforced by the user for under-constrined datasets.

compute_eigendecomp(atol=1e-13, rtol=None, max_num_eigvals=None)
Computes eigendecompositions of correlation array and approximating low-order linear map.

Kwargs: atol: Level below which eigenvalues of correlation array are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues of correlation array.
Smaller ones are truncated.
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max_num_eigvals: Maximum number of DMD eigenvalues that will be computed. This is en-
forced by truncating the basis onto which the approximating linear map is projected. Computationally,
this corresponds to truncating the eigendecomposition of the correlation array. If set to None, no trun-
cation will be performed, and the maximum possible number of DMD eigenvalues will be computed.

Useful if you already have the correlation array and cross-correlation array and want to avoid recomputing
them.

Usage:

TLSqrDMD.correlation_array = pre_existing_correlation_array
TLSqrDMD.adv_correlation_array = pre_existing_adv_correlation_array
TLSqrDMD.cross_correlation_array =

pre_existing_cross_correlation_array
TLSqrDMD.compute_eigendecomp()
TLSqrDMD.compute_exact_modes(

mode_idx_list, mode_handles, adv_vec_handles=adv_vec_handles)

Another way to use this is to compute TLSqrDMD using different basis truncation levels for the pro-
jection of the approximating linear map. Start by either computing a full decomposition or by loading
pre-computed correlation and cross-correlation arrays.

Usage:

# Start with a full decomposition
DMD_eigvals, correlation_array_eigvals = TLSqrDMD.compute_decomp(

vec_handles)[0, 3]

# Do some processing to determine the truncation level, maybe based
# on the DMD eigenvalues and correlation array eigenvalues
desired_num_eigvals = my_post_processing_func(

DMD_eigvals, correlation_array_eigvals)

# Do a truncated decomposition
DMD_eigvals_trunc = TLSqrDMD.compute_eigendecomp(
max_num_eigvals=desired_num_eigvals)

# Compute modes for truncated decomposition
TLSqrDMD.compute_exact_modes(

mode_idx_list, mode_handles, adv_vec_handles=adv_vec_handles)

Since it doesn’t overwrite the correlation and cross-correlation arrays, compute_eigendecomp can be
called many times in a row to do computations for different truncation levels. However, the results of the
decomposition (e.g., self.eigvals) do get overwritten, so you may want to call a put method to save
those results somehow.

Note that the truncation level (corresponding to max_num_eigvals) must be set to a value smaller than
the rank of the dataset, otherwise total-least-squares DMD reduces to standard DMD. This occurs naturally
for over-constrained datasets, but must be enforced by the user for under-constrined datasets.

compute_proj_coeffs()
Computes projection of (de-noised) vector objects onto DMD modes. Note that a biorthogonal projection
onto exact DMD modes is analytically equivalent to a least-squares projection onto projected DMD modes.

Returns: proj_coeffs: Array of projection coefficients for (de-noised)vector objects, expressed as a
linear combination of DMD modes. Columns correspond to vector objects, rows correspond to DMD
modes.

adv_proj_coeffs: Array of projection coefficients for (de-noised) vector objects advanced in
time, expressed as a linear combination of DMD modes. Columns correspond to vector objects, rows
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correspond to DMD modes.

compute_spectrum()
Computes DMD spectral coefficients. These coefficients come from a biorthogonal projection of the first
(de-noised) vector object onto the exact DMD modes, which is analytically equivalent to doing a least-
squares projection onto the projected DMD modes.

Returns: spectral_coeffs: 1D array of DMD spectral coefficients.

get_adv_correlation_array(src)
Gets the advanced correlation array from source (memory or file).

Args: src: Source from which to retrieve advanced correlation array.

get_decomp(eigvals_src, R_low_order_eigvecs_src, L_low_order_eigvecs_src,
sum_correlation_array_eigvals_src, sum_correlation_array_eigvecs_src,
proj_correlation_array_eigvals_src, proj_correlation_array_eigvecs_src)

Gets the decomposition arrays from sources (memory or file).

Args: eigvals_src: Source from which to retrieve eigenvalues of approximating low-order linear map
(DMD eigenvalues).

R_low_order_eigvecs_src: Source from which to retrieve right eigenvectors of approximating
low-order linear DMD map.

L_low_order_eigvecs_src: Source from which to retrieve left eigenvectors of approximating
low-order linear DMD map.

sum_correlation_array_eigvals_src: Source from which to retrieve eigenvalues of sum
correlation array.

sum_correlation_array_eigvecs_src: Source from which to retrieve eigenvectors of sum
correlation array.

proj_correlation_array_eigvals_src: Source from which to retrieve eigenvalues of pro-
jected correlation array.

proj_correlation_array_eigvecs_src: Source from which to retrieve eigenvectors of
projected correlation array.

get_proj_correlation_array(src)
Gets the projected correlation array from source (memory or file).

Args: src: Source from which to retrieve projected correlation array.

get_sum_correlation_array(src)
Gets the sum correlation array from source (memory or file).

Args: src: Source from which to retrieve sum correlation array.

put_adv_correlation_array(dest)
Puts advanced correlation array to dest.

put_correlation_array_eigvals(dest)
This method is not available for total least squares DMD

put_correlation_array_eigvecs(dest)
This method is not available for total least squares DMD

put_decomp(eigvals_dest, R_low_order_eigvecs_dest, L_low_order_eigvecs_dest,
sum_correlation_array_eigvals_dest, sum_correlation_array_eigvecs_dest,
proj_correlation_array_eigvals_dest, proj_correlation_array_eigvecs_dest)

Puts the decomposition arrays in destinations (file or memory).
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Args: eigvals_dest: Destination in which to put eigenvalues of approximating low-order linear map
(DMD eigenvalues).

R_low_order_eigvecs_dest: Destination in which to put right eigenvectors of approximating
low-order linear map.

L_low_order_eigvecs_dest: Destination in which to put left eigenvectors of approximating
low-order linear map.

sum_correlation_array_eigvals_dest: Destination in which to put eigenvalues of sum
correlation array.

sum_correlation_array_eigvecs_dest: Destination in which to put eigenvectors of sum
correlation array.

proj_correlation_array_eigvals_dest: Destination in which to put eigenvalues of pro-
jected correlation array.

proj_correlation_array_eigvecs_dest: Destination in which to put eigenvectors of pro-
jected correlation array.

put_proj_correlation_array(dest)
Puts projected correlation array to dest.

put_proj_correlation_array_eigvals(dest)
Puts eigenvalues of projected correlation array to dest.

put_proj_correlation_array_eigvecs(dest)
Puts eigenvectors of projected correlation array to dest.

put_sum_correlation_array(dest)
Puts sum correlation array to dest.

put_sum_correlation_array_eigvals(dest)
Puts eigenvalues of sum correlation array to dest.

put_sum_correlation_array_eigvecs(dest)
Puts eigenvectors of sum correlation array to dest.

modred.dmd.compute_DMD_arrays_direct_method(vecs, adv_vecs=None, mode_indices=None,
inner_product_weights=None, atol=1e-13,
rtol=None, max_num_eigvals=None)

Computes DMD modes using data stored in arrays, using direct method.

Args: vecs: Array whose columns are data vectors.

Kwargs: adv_vecs: Array whose columns are data vectors advanced in time. If not provided, then it is
assumed that the vectors describe a sequential time-series. Thus vecs becomes vecs[:, :-1] and
adv_vecs becomes vecs[:, 1:].

mode_indices: List of indices describing which modes to compute. Examples are range(10) or
[3, 0, 6, 8]. If no mode indices are specified, then all modes will be computed.

inner_product_weights: 1D or 2D array of inner product weights. Corresponds to 𝑊 in inner
product 𝑣*1𝑊𝑣2.

atol: Level below which eigenvalues of correlation array are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues of correlation array. Smaller
ones are truncated.

max_num_eigvals: Maximum number of DMD eigenvalues that will be computed. This is enforced
by truncating the basis onto which the approximating linear map is projected. Computationally, this cor-
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responds to truncating the eigendecomposition of the correlation array. If set to None, no truncation will
be performed, and the maximum possible number of DMD eigenvalues will be computed.

Returns: res: Results of DMD computation, stored in a namedtuple with the following attributes:

• eigvals: 1D array of eigenvalues of approximating low-order linear map (DMD eigenvalues).

• spectral_coeffs: 1D array of DMD spectral coefficients, calculated as the magnitudes of the
projection coefficients of first data vector. The projection is onto the span of the DMD modes using
the (biorthogonal) adjoint DMD modes. Note that this is the same as a least-squares projection onto
the span of the DMD modes.

• exact_modes: Array whose columns are exact DMD modes.

• proj_modes: Array whose columns are projected DMD modes.

• adjoint_modes: Array whose columns are adjoint DMD modes.

• proj_coeffs: Array of projection coefficients for data vectors expressed as a linear combination of
DMD modes. Columns correspond to vector objects, rows correspond to DMD modes. The projection
is onto the span of the DMD modes using the (biorthogonal) adjoint DMD modes. Note that this is
the same as a least-squares projection onto the span of the DMD modes.

• adv_proj_coeffs: Array of projection coefficients for data vectors advanced in time, expressed
as a linear combination of DMD modes. Columns correspond to vector objects, rows correspond to
DMD modes. The projection is onto the span of the DMD modes using the (biorthogonal) adjoint
DMD modes. Note that this is the same as a least-squares projection onto the span of the DMD
modes.

• R_low_order_eigvecs: Array of right eigenvectors of approximating low-order linear map.

• L_low_order_eigvecs: Array of left eigenvectors of approximating low-order linear map.

• correlation_array_eigvals: 1D array of eigenvalues of correlation array.

• correlation_array_eigvecs: Array of eigenvectors of correlation array.

Attributes can be accessed using calls like res.exact_modes. To see all available attributes, use
print(res).

This method does not square the array of vectors as in the method of snapshots
(compute_DMD_arrays_snaps_method()). It’s slightly more accurate, but slower when the number of
elements in a vector is more than the number of vectors, i.e., when vecs has more rows than columns.

modred.dmd.compute_DMD_arrays_snaps_method(vecs, adv_vecs=None, mode_indices=None,
inner_product_weights=None, atol=1e-13,
rtol=None, max_num_eigvals=None)

Computes DMD modes using data stored in arrays, using method of snapshots.

Args: vecs: Array whose columns are data vectors.

Kwargs: adv_vecs: Array whose columns are data vectors advanced in time. If not provided, then it is
assumed that the vectors describe a sequential time-series. Thus vecs becomes vecs[:, :-1] and
adv_vecs becomes vecs[:, 1:].

mode_indices: List of indices describing which modes to compute. Examples are range(10) or
[3, 0, 6, 8]. If no mode indices are specified, then all modes will be computed.

inner_product_weights: 1D or 2D array of inner product weights. Corresponds to 𝑊 in inner
product 𝑣*1𝑊𝑣2.

atol: Level below which eigenvalues of correlation array are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues of correlation array. Smaller
ones are truncated.
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max_num_eigvals: Maximum number of DMD eigenvalues that will be computed. This is enforced
by truncating the basis onto which the approximating linear map is projected. Computationally, this cor-
responds to truncating the eigendecomposition of the correlation array. If set to None, no truncation will
be performed, and the maximum possible number of DMD eigenvalues will be computed.

Returns: res: Results of DMD computation, stored in a namedtuple with the following attributes:

• eigvals: 1D array of eigenvalues of approximating low-order linear map (DMD eigenvalues).

• spectral_coeffs: 1D array of DMD spectral coefficients, calculated as the magnitudes of the
projection coefficients of first data vector. The projection is onto the span of the DMD modes using
the (biorthogonal) adjoint DMD modes. Note that this is the same as a least-squares projection onto
the span of the DMD modes.

• exact_modes: Array whose columns are exact DMD modes.

• proj_modes: Array whose columns are projected DMD modes.

• adjoint_modes: Array whose columns are adjoint DMD modes.

• proj_coeffs: Array of projection coefficients for data vectors expressed as a linear combination of
DMD modes. Columns correspond to vector objects, rows correspond to DMD modes. The projection
is onto the span of the DMD modes using the (biorthogonal) adjoint DMD modes. Note that this is
the same as a least-squares projection onto the span of the DMD modes.

• adv_proj_coeffs: Array of projection coefficients for data vectors advanced in time, expressed
as a linear combination of DMD modes. Columns correspond to vector objects, rows correspond to
DMD modes. The projection is onto the span of the DMD modes using the (biorthogonal) adjoint
DMD modes. Note that this is the same as a least-squares projection onto the span of the DMD
modes.

• R_low_order_eigvecs: Array of right eigenvectors of approximating low-order linear map.

• L_low_order_eigvecs: Array of left eigenvectors of approximating low-order linear map.

• correlation_array_eigvals: 1D array of eigenvalues of correlation array.

• correlation_array_eigvecs: Array of eigenvectors of correlation array.

• correlation_array: Correlation array; elements are inner products of data vectors with each
other.

• cross_correlation_array: Cross-correlation array; elements are inner products of data vec-
tors with data vectors advanced in time. Going down rows, the data vector changes; going across
columns the advanced data vector changes.

Attributes can be accessed using calls like res.exact_modes. To see all available attributes, use
print(res).

This uses the method of snapshots, which is faster than the direct method (see
compute_DMD_arrays_direct_method()) when vecs has more rows than columns, i.e., when
there are more elements in a vector than there are vectors. However, it “squares” this array and its singular
values, making it slightly less accurate than the direct method.

modred.dmd.compute_TLSqrDMD_arrays_direct_method(vecs, adv_vecs=None,
mode_indices=None, in-
ner_product_weights=None,
atol=1e-13, rtol=None,
max_num_eigvals=None)

Computes Total Least Squares DMD modes using data stored in arrays, using direct method.

Args: vecs: Array whose columns are data vectors.
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Kwargs: adv_vecs: Array whose columns are data vectors advanced in time. If not provided, then it is
assumed that the vectors describe a sequential time-series. Thus vecs becomes vecs[:, :-1] and
adv_vecs becomes vecs[:, 1:].

mode_indices: List of indices describing which modes to compute. Examples are range(10) or
[3, 0, 6, 8]. If no mode indices are specified, then all modes will be computed.

inner_product_weights: 1D or 2D array of inner product weights. Corresponds to 𝑊 in inner
product 𝑣*1𝑊𝑣2.

atol: Level below which eigenvalues of correlation array are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues of correlation array. Smaller
ones are truncated.

max_num_eigvals: Maximum number of DMD eigenvalues that will be computed. This is enforced
by truncating the basis onto which the approximating linear map is projected. Computationally, this cor-
responds to truncating the eigendecomposition of the correlation array. If set to None, no truncation will
be performed, and the maximum possible number of DMD eigenvalues will be computed.

Returns: res: Results of DMD computation, stored in a namedtuple with the following attributes:

• eigvals: 1D array of eigenvalues of approximating low-order linear map (DMD eigenvalues).

• spectral_coeffs: 1D array of DMD spectral coefficients, calculated as the magnitudes of the
projection coefficients of first (de-noised) data vector. The projection is onto the span of the DMD
modes using the (biorthogonal) adjoint DMD modes. Note that this is the same as a least-squares
projection onto the span of the DMD modes.

• exact_modes: Array whose columns are exact DMD modes.

• proj_modes: Array whose columns are projected DMD modes.

• adjoint_modes: Array whose columns are adjoint DMD modes.

• proj_coeffs: Array of projection coefficients for (de-noised) data vectors expressed as a linear
combination of DMD modes. Columns correspond to vector objects, rows correspond to DMD modes.
The projection is onto the span of the DMD modes using the (biorthogonal) adjoint DMD modes. Note
that this is the same as a least-squares projection onto the span of the DMD modes.

• adv_proj_coeffs: Array of projection coefficients for (de-noised) data vectors advanced in time,
expressed as a linear combination of DMD modes. Columns correspond to vector objects, rows cor-
respond to DMD modes. The projection is onto the span of the DMD modes using the (biorthogonal)
adjoint DMD modes. Note that this is the same as a least-squares projection onto the span of the DMD
modes.

• R_low_order_eigvecs: Array of right eigenvectors of approximating low-order linear map.

• L_low_order_eigvecs: Array of left eigenvectors of approximating low-order linear map.

• sum_correlation_array_eigvals: 1D array of eigenvalues of sum correlation array.

• sum_correlation_array_eigvecs: Array whose columns are eigenvectors of sum correla-
tion array.

• proj_correlation_array_eigvals: 1D array of eigenvalues of projected correlation array.

• proj_correlation_array_eigvecs: Array whose columns are eigenvectors of projected
correlation array.

Attributes can be accessed using calls like res.exact_modes. To see all available attributes, use
print(res).
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This method does not square the array of vectors as in the method of snapshots
(compute_DMD_arrays_snaps_method()). It’s slightly more accurate, but slower when the number of
elements in a vector is more than the number of vectors, i.e., when vecs has more rows than columns.

Note that max_num_eigvals must be set to a value smaller than the rank of the dataset. In other words, if the
projection basis for total-least-squares DMD is not truncated, then the algorithm reduces to standard DMD.
For over-constrained datasets (number of columns in data array is larger than the number of rows), this occurs
naturally. For under-constrained datasets, (number of vector objects is smaller than size of vector objects), this
must be done explicitly by the user. At this time, there is no standard method for choosing a truncation level.
One approach is to look at the roll-off of the correlation array eigenvalues, which contains information about the
“energy” content of each projection basis vectors.

modred.dmd.compute_TLSqrDMD_arrays_snaps_method(vecs, adv_vecs=None,
mode_indices=None, in-
ner_product_weights=None,
atol=1e-13, rtol=None,
max_num_eigvals=None)

Computes Total Least Squares DMD modes using data stored in arrays, using method of snapshots.

Args: vecs: Array whose columns are data vectors.

Kwargs: adv_vecs: Array whose columns are data vectors advanced in time. If not provided, then it is
assumed that the vectors describe a sequential time-series. Thus vecs becomes vecs[:, :-1] and
adv_vecs becomes vecs[:, 1:].

mode_indices: List of indices describing which modes to compute. Examples are range(10) or
[3, 0, 6, 8]. If no mode indices are specified, then all modes will be computed.

inner_product_weights: 1D or 2D array of inner product weights. Corresponds to 𝑊 in inner
product 𝑣*1𝑊𝑣2.

atol: Level below which eigenvalues of correlation array are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues of correlation array. Smaller
ones are truncated.

max_num_eigvals: Maximum number of DMD eigenvalues that will be computed. This is enforced
by truncating the basis onto which the approximating linear map is projected. Computationally, this cor-
responds to truncating the eigendecomposition of the correlation array. If set to None, no truncation will
be performed, and the maximum possible number of DMD eigenvalues will be computed.

Returns: res: Results of DMD computation, stored in a namedtuple with the following attributes:

• eigvals: 1D array of eigenvalues of approximating low-order linear map (DMD eigenvalues).

• spectral_coeffs: 1D array of DMD spectral coefficients, calculated as the magnitudes of the
projection coefficients of first (de-noised) data vector. The projection is onto the span of the DMD
modes using the (biorthogonal) adjoint DMD modes. Note that this is the same as a least-squares
projection onto the span of the DMD modes.

• exact_modes: Array whose columns are exact DMD modes.

• proj_modes: Array whose columns are projected DMD modes.

• adjoint_modes: Array whose columns are adjoint DMD modes.

• proj_coeffs: Array of projection coefficients for (de-noised) data vectors expressed as a linear
combination of DMD modes. Columns correspond to vector objects, rows correspond to DMD modes.
The projection is onto the span of the DMD modes using the (biorthogonal) adjoint DMD modes. Note
that this is the same as a least-squares projection onto the span of the DMD modes.
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• adv_proj_coeffs: Array of projection coefficients for (de-noised) data vectors advanced in time,
expressed as a linear combination of DMD modes. Columns correspond to vector objects, rows cor-
respond to DMD modes. The projection is onto the span of the DMD modes using the (biorthogonal)
adjoint DMD modes. Note that this is the same as a least-squares projection onto the span of the DMD
modes.

• R_low_order_eigvecs: Array of right eigenvectors of approximating low-order linear map.

• L_low_order_eigvecs: Array of left eigenvectors of approximating low-order linear map.

• sum_correlation_array_eigvals: 1D array of eigenvalues of sum correlation array.

• sum_correlation_array_eigvecs: Array whose columns are eigenvectors of sum correla-
tion array.

• proj_correlation_array_eigvals: 1D array of eigenvalues of projected correlation array.

• proj_correlation_array_eigvecs: Array whose columns are eigenvectors of projected
correlation array.

• correlation_array: Correlation array; elements are inner products of data vectors with each
other.

• adv_correlation_array: Advanced correlation array; elements are inner products of advanced
data vectors with each other.

• cross_correlation_array: Cross-correlation array; elements are inner products of data vec-
tors with data vectors advanced in time. Going down rows, the data vector changes; going across
columns the advanced data vector changes.

Attributes can be accessed using calls like res.exact_modes. To see all available attributes, use
print(res).

This uses the method of snapshots, which is faster than the direct method (see
compute_TLSqrDMD_arrays_direct_method()) when vecs has more rows than columns,
i.e., when there are more elements in a vector than there are vectors. However, it “squares” this array and its
singular values, making it slightly less accurate than the direct method.

Note that max_num_eigvals must be set to a value smaller than the rank of the dataset. In other words, if the
projection basis for total-least-squares DMD is not truncated, then the algorithm reduces to standard DMD.
For over-constrained datasets (number of columns in data array is larger than the number of rows), this occurs
naturally. For under-constrained datasets, (number of vector objects is smaller than size of vector objects), this
must be done explicitly by the user. At this time, there is no standard method for choosing a truncation level.
One approach is to look at the roll-off of the correlation array eigenvalues, which contains information about the
“energy” content of each projection basis vectors.
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LTIGalerkinProjection

Module for Galerkin projection of LTI systems.

class modred.ltigalerkinproj.LTIGalerkinProjectionArrays(basis_vecs, ad-
joint_basis_vecs=None,
is_basis_orthonormal=False,
in-
ner_product_weights=None,
put_array=<function
save_array_text>)

Computes A, B, and C arrays of reduced-order model (ROM) of a linear time-invariant (LTI) system, from data
stored in arrays.

Args: basis_vecs: Array whose columns are basis vectors.

Kwargs: adjoint_basis_vec_handles: Array whose columns are adjoint basis vectors. If not given,
then assumed to be the same as basis_vecs.

is_basis_orthonormal: Boolean for biorthonormality of the basis vecs. True if the basis and
adjoint basis vectors are biorthonormal. Default is False.

inner_product_weights: 1D or 2D array of inner product weights. Corresponds to 𝑊 in inner
product 𝑣*1𝑊𝑣2.

put_array: Function to put an array out of modred, e.g., write it to file.

This class projects discrete- or continuous-time dynamics onto a set of basis vectors, producing reduced-order
models. For example, the basis vectors could be POD, BPOD, or DMD modes. It uses vectorspace.
VectorSpaceArrays for low level functions.

Usage:

LTI_proj = LTIGalerkinProjectionArray(
basis_vecs, adjoint_basis_vecs=adjoint_basis_vecs,
is_basis_orthonormal=True)

A, B, C = LTI_proj.compute_model(
A_on_basis_vecs, B_on_standard_basis_array, C_on_basis_vecs)
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compute_model(A_on_basis_vecs, B_on_standard_basis_array, C_on_basis_vecs)
Computes the continous- or discrete-time reduced A, B, and C arrays.

Args: A_on_basis_vecs: Array whose columns contain𝐴*𝑏𝑎𝑠𝑖𝑠𝑣𝑒𝑐𝑠, i.e., the results of𝐴 acting on
individual basis vectors. 𝐴 can represent either discrete- or continuous-time dynamics. For continuous
time systems, see also compute_derivs_arrays().

B_on_standard_basis_array: Array whose jth column contains 𝐵 * 𝑒𝑗 , i.e., the action of the
𝐵 array on the jth standard basis vector (a vector with a 1 at the jth index and zeros elsewhere).

C_on_basis_vecs: Array whose columns contain 𝐶 * 𝑏𝑎𝑠𝑖𝑠𝑣𝑒𝑐𝑠, i.e., the results of 𝐶 acting on
individual basis vectors.

Returns: A_reduced: Reduced-order A array.

B_reduced: Reduced-order B array.

C_reduced: Reduced-order C array.

reduce_A(A_on_basis_vecs)
Computes the continous- or discrete-time reduced A array.

Args: A_on_basis_vecs: Array whose columns contain𝐴*𝑏𝑎𝑠𝑖𝑠𝑣𝑒𝑐𝑠, i.e., the results of𝐴 acting on
individual basis vectors. 𝐴 can represent either discrete- or continuous-time dynamics. For continuous
time systems, see also compute_derivs_arrays().

Returns: A_reduced: Reduced-order A array.

reduce_B(B_on_standard_basis_array)
Computes the continous- or discrete-time reduced B array.

Args: B_on_standard_basis_array: Array whose jth column contains 𝐵 * 𝑒𝑗 , i.e., the action of
the 𝐵 array on the jth standard basis vector (a vector with a 1 at the jth index and zeros elsewhere).

Returns: B_reduced: Reduced-order B array.

Note that if you found the modes via sampling initial condition responses to B (and C), then your snapshots
may be missing a factor of 1 / dt (where dt is the first simulation time step). This can be remedied by
multiplying B_reduced by dt.

reduce_C(C_on_basis_vecs)
Computes the continous- or discrete-time reduced C array.

Args: C_on_basis_vecs: Array whose columns contain 𝐶 * 𝑏𝑎𝑠𝑖𝑠𝑣𝑒𝑐𝑠, i.e., the results of 𝐶 acting
on individual basis vectors.

Returns: C_reduced: Reduced-order C array.

class modred.ltigalerkinproj.LTIGalerkinProjectionHandles(inner_product, ba-
sis_vec_handles, ad-
joint_basis_vec_handles=None,
is_basis_orthonormal=False,
put_array=<function
save_array_text>,
verbosity=1,
max_vecs_per_node=10000)

Computes A, B, and C arrays of reduced-order model (ROM) of a linear time-invariant (LTI) system, using
vector handles.

Args: inner_product: Function that computes inner product of two vector objects.

basis_vec_handles: List of handles for basis vector objects.
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Kwargs: adjoint_basis_vec_handles: List of handles for adjoint basis vector objects. If not given,
then assumed to be the same as basis_vec_handles.

is_basis_orthonormal: Boolean for biorthonormality of the basis vecs. True if the basis and
adjoint basis vectors are biorthonormal. Default is False.

put_array: Function to put an array out of modred, e.g., write it to file.

max_vecs_per_node: Maximum number of vectors that can be stored in memory, per node.

verbosity: 1 prints progress and warnings, 0 prints almost nothing.

This class projects discrete- or continuous-time dynamics onto a set of basis vectors, producing reduced-order
models. For example, the basis vectors could be POD, BPOD, or DMD modes.

Usage:

LTI_proj = LTIGalerkinProjectionHandles(
inner_product, basis_vec_handles,
adjoint_basis_vec_handles=adjoint_basis_vec_handles,
is_basis_orthonormal=True)

A, B, C = LTI_proj.compute_model(
A_on_basis_vec_handles, B_on_standard_basis_handles, C_on_basis_vecs)

compute_model(A_on_basis_vec_handles, B_on_standard_basis_handles, C_on_basis_vecs)
Computes the continous- or discrete-time reduced A, B, and C arrays.

Args: A_on_basis_vec_handles: List of handles for the results of 𝐴 acting on individual basis
vectors. 𝐴 can represent either discrete- or continuous-time dynamics. For continuous time systems,
see also compute_derivs_handles().

B_on_standard_basis_handles: List of handles for the results of 𝐵 acting on standard basis
vectors (vectors with a 1 at the jth index and zeros elsewhere).

C_on_basis_vecs: List of 1D arrays, each of which is the result of 𝐶 acting on an individual
basis vector.

Returns: A_reduced: Reduced-order A array.

B_reduced: Reduced-order B array.

C_reduced: Reduced-order C array.

reduce_A(A_on_basis_vec_handles)
Computes the continous- or discrete-time reduced A array.

Args: A_on_basis_vec_handles: List of handles for the results of 𝐴 acting on individual basis
vectors. 𝐴 can represent either discrete- or continuous-time dynamics. For continuous time systems,
see also compute_derivs_handles().

Returns: A_reduced: Reduced-order A array.

reduce_B(B_on_standard_basis_handles)
Computes the continous- or discrete-time reduced B array.

Args: B_on_standard_basis_handles: List of handles for the results of 𝐵 acting on standard
basis vectors (vectors with a 1 at the jth index and zeros elsewhere).

Returns: B_reduced: Reduced-order B array.

Note that if you found the modes via sampling initial condition responses to B (and C), then your snapshots
may be missing a factor of 1/dt (where dt is the first simulation time step). This can be remedied by
multiplying B_reduced by dt.
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reduce_C(C_on_basis_vecs)
Computes the continous- or discrete-time reduced C array.

Args: C_on_basis_vecs: List of 1D arrays, each of which is the result of 𝐶 acting on an individual
basis vector.

Returns: C_reduced: Reduced-order C array.

modred.ltigalerkinproj.compute_derivs_arrays(vecs, adv_vecs, dt)
Computes 1st-order time derivatives using data stored in arrays.

Args: vecs: Array whose columns are data vectors.

adv_vecs: Array whose columns are data vectors advanced in time.

dt: Time step, corresponding to time advanced between vec_handles and adv_vec_handles

Returns: deriv_vecs: Array whose columns are time derivatives of data vectors.

Computes d(vec)/dt = ( vec(t=dt) - vec(t=0) ) / dt.

modred.ltigalerkinproj.compute_derivs_handles(vec_handles, adv_vec_handles, de-
riv_vec_handles, dt)

Computes 1st-order time derivatives of vector objects, using handles.

Args: vec_handles: List of handles for vector objects.

adv_vec_handles: List of handles for vector objects advanced 𝑑𝑡 in time.

deriv_vec_handles: List of handles for time derivatives of vector objects.

dt: Time step, corresponding to time advanced between vec_handles and adv_vec_handles

Computes d(vec)/dt = ( vec(t=dt) - vec(t=0) ) / dt.

modred.ltigalerkinproj.standard_basis(num_dims)
Returns list of standard basis vectors of space 𝑅𝑛.

Args: num_dims: Number of dimensions.

Returns: basis: The standard basis as a list of 1D arrays [array([1,0,...]), array([0,1,...
]), ...].
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CHAPTER 11

ERA

Functions and classes fo rERA models. See paper by Ma et al. 2011, TCFD.

class modred.era.ERA(put_array=<function save_array_text>, mc=None, mo=None, verbosity=1)
Eigensystem realization algorithm (ERA), implemented for discrete-time systems.

Kwargs: put_array: Function to put an array out of modred, e.g., write it to file.

mc: Number of Markov parameters for controllable dimension of Hankel array.

mo: Number of Markov parameters for observable dimension of Hankel array.

verbosity: 1 prints progress and warnings, 0 prints almost nothing.

Computes reduced-order model (ROM) of a discrete-time system, using output data from an impulse response.

Simple usage:

# Obtain array "Markovs" with dims [time, output, input]
myERA = ERA()
A, B, C = myERA.compute_model(Markovs, 50)
sing_vals = myERA.sing_vals

Another example:

# Obtain Markov parameters
myERA = ERA()
myERA.compute_model(Markovs, 50)
myERA.put_model('A.txt', 'B.txt', 'C.txt')

Notes:

• Default values of mc and mo are equal and maximal for a balanced model.

• The Markov parameters are to be given in the time-sampled format: 𝑑𝑡 * [0, 1, 𝑃, 𝑃 + 1, 2𝑃, 2𝑃 + 1, ...]

• The special case where 𝑃 = 2 results in 𝑑𝑡 * [0, 1, 2, 3, ...], see make_sampled_format().

• The functions util.load_signals() and util.load_multiple_signals() are often useful.
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• See convenience function compute_ERA_model().

compute_model(Markovs, num_states, mc=None, mo=None)
Computes the A, B, and C arrays of the linear time-invariant (LTI) reduced-order model (ROM).

Args: Markovs: Array of Markov parameters with indices [time, output, input]. Markovs[i] is the
Markov parameter 𝐶𝐴𝑖𝐵.

num_states: Number of states in reduced-order model.

Kwargs: mc: Number of Markov parameters for controllable dimension of Hankel array.

mo: Number of Markov parameters for observable dimension of Hankel array.

Assembles the Hankel arrays from self.Markovs and computes a singular value decomposition. Uses the
results to form the A, B, and C arrays.

Note that the default values of mc and mo are equal and maximal for a balanced model.

Tip: For discrete time systems the impulse is applied over a time interval 𝑑𝑡 and so has a time-integral
1 * 𝑑𝑡 rather than 1. This means the reduced B array is “off” by a factor of 𝑑𝑡. You can account for this by
multiplying B by 𝑑𝑡.

put_decomp(sing_vals_dest, L_sing_vecs_dest, R_sing_vecs_dest, Hankel_array_dest, Han-
kel_array2_dest)

Puts the decomposition arrays and Hankel arrays in destinations (file or memory).

Args: sing_vals_dest: Destination in which to put Hankel singular values.

L_sing_vecs_dest: Destination in which to put left singular vectors of Hankel array.

R_sing_vecs_dest: Destination in which to put right singular vectors of Hankel array.

Hankel_array_dest: Destination in which to put Hankel array.

Hankel_array2_dest: Destination in which to put second Hankel array.

put_model(A_dest, B_dest, C_dest)
Puts the A, B, and C arrays of the linear time-invariant (LTI) reduced-order model (ROM) in destinations
(file or memory).

Args: A_dest: Destination in which to put A array of reduced-order model.

B_dest: Destination in which to put B array of reduced-order model.

C_dest: Destination in which to put C array of reduced-order model.

put_sing_vals(sing_vals_dest)
Puts the singular values to sing_vals_dest.

modred.era.compute_ERA_model(Markovs, num_states)
Convenience function to compute linear time-invariant (LTI) reduced-order model (ROM) arrays A, B, and C
using the eigensystem realization algorithm (ERA) with default settings.

Args: Markovs: Array of Markov parameters with indices [time, output, input]. Markovs[i] is the Markov
parameter 𝐶𝐴𝑖𝐵.

num_states: Number of states in reduced-order model.

Returns: A: A array of reduced-order model.

B: B array of reduced-order model.

C: C array of reduced-order model.

Usage:
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# Obtain ``Markovs`` array w/indicies [time, output, input]
num_states = 20
A, B, C = compute_ERA_model(Markovs, num_states)

Notes:

• Markov parameters are defined as [𝐶𝐵,𝐶𝐴𝐵,𝐶𝐴𝑃𝐵,𝐶𝐴(𝑃 + 1)𝐵, ...]

• The functions util.load_signals() and util.load_multiple_signals() are often useful.

modred.era.make_sampled_format(times, Markovs, dt_tol=1e-06)
Converts samples at [0 1 2 . . . ] into samples at [0 1 1 2 2 3 . . . ].

Args: times: Array of time values or time step indices.

Markovs: Array of Markov parameters with indices [time, output, input]. Markovs[i] is the Markov
parameter 𝐶𝐴𝑖𝐵.

Kwargs: dt_tol: Allowable deviation from uniform time steps.

Returns: time_steps: Array of time step indices, [0 1 1 2 2 3 . . . ].

Markovs: Output array at the time step indices.

dt: Time interval between each time step.

Takes a series of data at times 𝑑𝑡* [0123...] and duplicates entries so that the result is sampled at 𝑑𝑡* [011223...].
When the second format is used in the eigensystem realization algorithm (ERA), the resulting model has a time
step of 𝑑𝑡 rather than 2 * 𝑑𝑡.
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CHAPTER 12

OKID

OKID function. (Book: Applied System Identification, Jer-Nan Juang, 1994)

modred.okid.OKID(inputs, outputs, num_Markovs)
Approximates Markov paramters using arbitrary input and output data.

Args: inputs: Array of input signals. Each row corresponds to a different input, each each column to a
different time.

outputs: Array of output signals. Each row corresponds to a different output, each each column to a
different time.

num_Markovs: Number of Markov parameters to estimate.

Returns: Markovs_est: Array of Markov paramemters. Array dimensions correspond to times, outputs,
and inputs, respectively. Thus Markovs_est[ti] is the Markov parameter at time index ti.

OKID can be sensitive to the choice of parameters. A few tips:

• Use a tail (input=0) for your input/output data, otherwise the Markov parameters might grow rather than
decay at large times.

• If necessary, artificially append your data with zero input and exponentially decaying output.

• Set num_Markovs less than or equal to half of the number of samples (𝑛𝑢𝑚𝑀𝑎𝑟𝑘𝑜𝑣𝑠 <=
𝑛𝑢𝑚𝑠𝑎𝑚𝑝𝑙𝑒𝑠/2). Estimating too many Markov parameters can produce spurious oscillations.

• Data with more than one input tends to be harder to work with.
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CHAPTER 13

Vectors Module

Vectors, handles, and inner products.

We recommend using these functions and classes when possible. Otherwise, you can write your own vector class
and/or vector handle, see documentation Interfacing with your data.

class modred.vectors.InnerProductTrapz(*grids)
Callable that computes inner product of n-dimensional arrays defined on a spatial grid, using the trapezoidal
rule.

Args: *grids: 1D arrays of grid points, in the order of the spatial dimensions.

Usage:

nx = 10
ny = 11
x_grid = 1 - np.cos(np.linspace(0, np.pi, nx))
y_grid = np.linspace(0, 1.0, ny)**2
my_trapz = InnerProductTrapz(x_grid, y_grid)

v1 = np.random.random((nx,ny))
v2 = np.random.random((nx,ny))
IP_v1_v2 = my_trapz(v1, v2)

inner_product(vec1, vec2)
Computes inner product.

class modred.vectors.VecHandle(base_vec_handle=None, scale=None)
Recommended base class for vector handles (not required).

get()
Get a vector, using the private (user-overwritten) _get function. If available, the base vector will be
subtracted from the specified vector. Then, if a scale factor is specified, the base-subtracted vector will be
scaled. The scaled, base-subtracted vector is then returned.

put(vec)
Put a vector to file or memory using the private (user-overwritten) _put function.

61



modred Documentation, Release 2.0.4.post6

class modred.vectors.VecHandleArrayText(vec_path, base_vec_handle=None, scale=None,
is_complex=False)

Gets and puts array vector objects from/in text files.

class modred.vectors.VecHandleInMemory(vec=None, base_vec_handle=None, scale=None)
Gets and puts vectors from/in memory.

class modred.vectors.VecHandlePickle(vec_path, base_vec_handle=None, scale=None)
Gets and puts any vector object from/in pickle files.

class modred.vectors.Vector
Recommended base class for vector objects (not required).

modred.vectors.inner_product_array_uniform(vec1, vec2)
Takes inner product of numpy arrays without weighting. The first element is conjugated, i.e., IP =
np.dot(vec1.conj().T, v2)
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CHAPTER 14

VectorSpace

class modred.vectorspace.VectorSpaceArrays(weights=None)
Implements inner products and linear combinations using data stored in arrays.

Kwargs: inner_product_weights: 1D array of inner product weights. Corresponds to 𝑊 in inner prod-
uct 𝑣*1𝑊𝑣2.

class modred.vectorspace.VectorSpaceHandles(inner_product=None,
max_vecs_per_node=None, verbosity=1,
print_interval=10)

Provides efficient, parallel implementations of vector space operations, using handles.

Kwargs: inner_product: Function that computes inner product of two vector objects.

max_vecs_per_node: Maximum number of vectors that can be stored in memory, per node.

verbosity: 1 prints progress and warnings, 0 prints almost nothing.

print_interval: Minimum time (in seconds) between printed progress messages.

This class implements low-level functions for computing large numbers of vector sums and inner products.
These functions are used by high-level classes in pod, bpod, dmd and ltigalerkinproj.

Note: Computations are often sped up by using all available processors, even if this lowers
max_vecs_per_node proportionally. However, this depends on the computer and the nature of the func-
tions supplied, and sometimes loading from file is slower with more processors.

compute_inner_product_array(row_vec_handles, col_vec_handles)
Computes array whose elements are inner products of the vector objects in row_vec_handles and
col_vec_handles.

Args: row_vec_handles: List of handles for vector objects corresponding to rows of the inner product
array. For example, in BPOD this is the adjoint snapshot array 𝑌 .

col_vec_handles: List of handles for vector objects corresponding to columns of the inner prod-
uct array. For example, in BPOD this is the direct snapshot array 𝑋 .

Returns: IP_array: 2D array of inner products.
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The vectors are retrieved in memory-efficient chunks and are not all in memory at once. The
row vectors and column vectors are assumed to be different. When they are the same, use
compute_symm_inner_product() for a 2x speedup.

Each MPI worker (processor) is responsible for retrieving a subset of the rows and columns. The processors
then send/receive columns via MPI so they can be used to compute all inner products for the rows on each
MPI worker. This is repeated until all MPI workers are done with all of their row chunks. If there are 2
processors:

| x o |
rank0 | x o |

| x o |
-

| o x |
rank1 | o x |

| o x |

In the next step, rank 0 sends column 0 to rank 1 and rank 1 sends column 1 to rank 0. The remaining inner
products are filled in:

| x x |
rank0 | x x |

| x x |
-

| x x |
rank1 | x x |

| x x |

When the number of columns and rows is not divisible by the number of processors, the processors are
assigned unequal numbers of tasks. However, all processors are always part of the passing cycle.

The scaling is:

• num gets / processor ~ (𝑛𝑟 * 𝑛𝑐/((𝑚𝑎𝑥− 2) * 𝑛𝑝 * 𝑛𝑝)) + 𝑛𝑟/𝑛𝑝

• num MPI sends / processor ~ (𝑛𝑝 − 1) * (𝑛𝑟/((𝑚𝑎𝑥− 2) * 𝑛𝑝)) * 𝑛𝑐/𝑛𝑝

• num inner products / processor ~ 𝑛𝑟 * 𝑛𝑐/𝑛𝑝
where 𝑛𝑟 is number of rows, 𝑛𝑐 number of columns, 𝑚𝑎𝑥 is max_vecs_per_proc =
max_vecs_per_node/num_procs_per_node, and 𝑛𝑝 is the number of MPI workers (processors).

If there are more rows than columns, then an internal transpose and un-transpose is performed to improve
efficiency (since 𝑛𝑐 only appears in the scaling in the quadratic term).

compute_symm_inner_product_array(vec_handles)
Computes symmetric array whose elements are inner products of the vector objects in vec_handles
with each other.

Args: vec_handles: List of handles for vector objects corresponding to both rows and columns. For
example, in POD this is the snapshot array 𝑋 .

Returns: IP_array: 2D array of inner products.

See the documentation for compute_inner_product_array() for an idea how this works. Effi-
ciency is achieved by only computing the upper-triangular elements, since the array is symmetric. Within
the upper-triangular portion, there are rectangular chunks and triangular chunks. The rectangular chunks
are divided up among MPI workers (processors) as weighted tasks. Once those have been computed, the
triangular chunks are dealt with.

lin_combine(sum_vec_handles, basis_vec_handles, coeff_array, coeff_array_col_indices=None)
Computes linear combination(s) of basis vector objects and calls put on result(s), using handles.
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Args: sum_vec_handles: List of handles for the sum vector objects.

basis_vec_handles: List of handles for the basis vector objects.

coeff_array: Array whose rows correspond to basis vectors and whose columns correspond to
sum vectors. The rows and columns correspond, by index, to the lists basis_vec_handles and
sum_vec_handles. In matrix notation, we can write sums = basis * coeff_array

Kwargs: coeff_array_col_indices: List of column indices. Only the sum_vecs corresponding
to these columns of the coefficient array are computed. If no column indices are specified, then all
columns will be used.

Each MPI worker (processor) retrieves a subset of the basis vectors to compute as many outputs as an MPI
worker (processor) can have in memory at once. Each MPI worker (processor) computes the “layers” from
the basis it is responsible for, and for as many modes as it can fit in memory. The layers from all MPI
workers (processors) are summed together to form the sum_vecs and put is called on each.

Scaling is:

num gets/worker = 𝑛𝑠/(𝑛𝑝 * (𝑚𝑎𝑥− 2)) * 𝑛𝑏/𝑛𝑝
passes/worker = (𝑛𝑝 − 1) * 𝑛𝑠/(𝑛𝑝 * (𝑚𝑎𝑥− 2)) * (𝑛𝑏/𝑛𝑝)

scalar multiplies/worker = 𝑛𝑠 * 𝑛𝑏/𝑛𝑝
where 𝑛𝑠 is number of sum vecs, 𝑛𝑏 is number of basis vecs, 𝑛𝑝 is number of processors, 𝑚𝑎𝑥 =
max_vecs_per_node.

print_msg(msg, output_channel=’stdout’)
Print a message from rank zero MPI worker/processor.

sanity_check(test_vec_handle)
Checks that user-supplied vector handle and vector satisfy requirements.

Args: test_vec_handle: A vector handle to test.

The add and multiply functions are tested for the vector object. This is not a complete testing, but catches
some common mistakes. An error is raised if a check fails.
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CHAPTER 15

Parallel Class

Parallel class and functions for distributed memory

modred.parallel.barrier()
Wrapper for Barrier(); forces all processors/MPI workers to synchronize.

modred.parallel.bcast(vals)
Broadcasts values from rank zero processor/MPI worker to all others.

Args: vals: Values to broadcast from rank zero processor/MPI worker.

Returns: outputs: Broadcasted values

modred.parallel.call_and_bcast(func, *args, **kwargs)
Calls function on rank zero processor/MPI worker and broadcasts outputs to all others.

Args: func: A callable that takes *args and **kwargs

*args: Required arguments for func.

**kwargs: Keyword args for func.

Usage:

# Adds one to the rank, but only evaluated on rank 0, so
# ``outputs==1`` on all processors/MPI workers.
outputs = parallel.call_and_bcast(lambda x: x+1, parallel.get_rank())

modred.parallel.call_from_rank_zero(func, *args, **kwargs)
Calls function from rank zero processor/MPI worker, does not call barrier().

Args: func: Function to call.

*args: Required arguments for func.

**kwargs: Keyword args for func.

Usage:
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parallel.call_from_rank_zero(lambda x: x+1, 1)

modred.parallel.check_for_empty_tasks(task_assignments)
Convenience function that checks for empty processor/MPI worker assignments.

Args: task_assignments: List of task assignments.

Returns: empty_tasks: True if any processor/MPI worker has no tasks, otherwise False.

modred.parallel.find_assignments(tasks, task_weights=None)
Evenly distributes tasks among all processors/MPI workers using task weights.

Args: tasks: List of tasks. A “task” can be any object that corresponds to a set of operations that needs to
be completed. For example tasks could be a list of indices, telling each processor/MPI worker which
indices of an array to operate on.

Kwargs: task_weights: List of weights for each task. These are used to equally distribute the workload
among processors/MPI workers, in case some tasks are more expensive than others.

Returns: task_assignments: 2D list of tasks, with indices corresponding to [rank][task_index]. Each
processor/MPI worker is responsible for task_assignments[rank]

modred.parallel.get_hostname()
Returns hostname for this node.

modred.parallel.get_node_ID()
Returns unique ID number for this node.

modred.parallel.get_num_MPI_workers()
Returns number of MPI workers (currently same as number of processors).

modred.parallel.get_num_nodes()
Returns number of nodes.

modred.parallel.get_num_procs()
Returns number of processors (currently same as number of MPI workers).

modred.parallel.get_rank()
Returns rank of this processor/MPI worker.

modred.parallel.is_distributed()
Returns True if there is more than one processor/MPI worker and mpi4py was imported properly.

modred.parallel.is_rank_zero()
Returns True if rank is zero, False if not.

modred.parallel.print_from_rank_zero(msg, output_channel=’stdout’)
Prints msg from rank zero processor/MPI worker only.
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CHAPTER 16

Utility Functions

A group of useful functions

modred.util.Hankel(first_col, last_row=None)
Construct a Hankel array, whose skew diagonals are constant.

Args: first_col: 1D array corresponding to first column of Hankel array.

Kwargs: last_row: 1D array corresponding to the last row of Hankel array. First element will be ignored.
Default is an array of zeros of the same size as first_col.

Returns: Hankel: 2D array with dimensions [len(first_col), len(last_row)].

modred.util.Hankel_chunks(first_col_chunks, last_row_chunks=None)
Construct a Hankel array using chunks, whose elements have Hankel structure at the chunk level (constant along
skew diagonals), rather than at the element level.

Args: first_col_chunks: List of 2D arrays corresponding to the first column of Hankel array chunks.

Kwargs: last_row_chunks: List of 2D arrays corresponding to the last row of Hankel array chunks. De-
fault is a list of arrays of zeros.

Returns: Hankel: 2D array with dimension [len(first_col) * first_col[0].shape[0],
len(last_row) * last_row[0].shape[1]].

class modred.util.InnerProductBlock(inner_product)
Only used in tests. Takes inner product of all vectors.

exception modred.util.UndefinedError

modred.util.atleast_2d_col(array)
Converts 1d arrays to 2d arrays, but always as column vectors

modred.util.atleast_2d_row(array)
Converts 1d arrays to 2d arrays, but always as row vectors

modred.util.balanced_truncation(A, B, C, order=None, return_sing_vals=False)
Balance and truncate discrete-time linear time-invariant (LTI) system defined by A, B, C arrays. It’s not very
accurate due to numerical issues.
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Args: A, B, C: LTI discrete-time arrays.

Kwargs: order: Order (number of states) of truncated system. Default is to use the maximal possible value
(can truncate system afterwards).

Returns: A_balanced, B_balanced, C_balanced: LTI discrete-time arrays of balanced system.

If return_sing_vals is True, also returns:

sing_vals: Hankel singular values.

Notes:

• D is unchanged by balanced truncation.

• This function is not computationally efficient or accurate relative to Matlab’s balancmr.

modred.util.drss(num_states, num_inputs, num_outputs)
Generates a discrete-time random state-space system.

Args: num_states: Number of states.

num_inputs: Number of inputs.

num_outputs: Number of outputs.

Returns: A, B, C: State-space arrays of discrete-time system.

By construction, all eigenvalues are real and stable.

modred.util.eig_biorthog(array, scale_choice=’left’)
Wrapper for numpy.linalg.eig that returns both left and right eigenvectors. Eigenvalues and eigenvectors
are sorted and scaled so that the left and right eigenvector arrays are orthonormal.

Args: array: Array to take eigendecomposition of.

Kwargs: scale_choice: Determines whether ‘left’ (default) or ‘right’ eigenvectors will be scaled to yield
a biorthonormal set. The other eigenvectors will be left unscaled, leaving them with unit norms.

Returns: evals: 1D array of eigenvalues.

R_evecs: Array whose columns are right eigenvectors.

L_evecs: Array whose columns are left eigenvectors.

modred.util.eigh(array, atol=1e-13, rtol=None, is_positive_definite=False)
Wrapper for numpy.linalg.eigh. Computes eigendecomposition of a Hermitian array.

Args: array: Array to take eigendecomposition of.

atol: Value below which eigenvalues (and corresponding eigenvectors) are truncated.

rtol: Maximum relative difference between largest and smallest eigenvalues. Smaller ones are truncated.

is_positive_definite: If true, array being decomposed will be assumed to be positive definite.
Tolerance will be automatically adjusted (if necessary) so that only positive eigenvalues are returned.

Returns: eigvals: 1D array of eigenvalues, sorted in descending order (of magnitude).

eigvecs: Array whose columns are eigenvectors.

modred.util.flatten_list(my_list)
Flatten a list of lists into a single list.

modred.util.get_data_members(obj)
Returns a dictionary containing data members of obj.
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modred.util.get_file_list(directory, file_extension=None)
Returns list of files in directory with file_extension.

modred.util.impulse(A, B, C, num_time_steps=None)
Generates impulse response outputs for a discrete-time system.

Args: A, B, C: State-space system arrays.

Kwargs: num_time_steps: Number of time steps to simulate.

Returns: outputs: Impulse response outputs, with indices corresponding to [time step, output, input].

No D array is included, but one can simply be prepended to the output if it is non-zero.

modred.util.load_array_text(file_name, delimiter=None, is_complex=False)
Reads data saved in a text file, returns an array.

Args: file_name: Name of file from which to load data.

Kwargs: delimiter: Delimiter in file. Default is same as numpy.loadtxt.

is_complex: Boolean describing whether the data to be loaded is complex valued.

Returns: array: 2D array containing loaded data.

See save_array_text() for the format used by this function.

modred.util.load_multiple_signals(signal_paths, delimiter=None)
Loads multiple signal files from text files with columns [t channel1 channel2 . . . ].

Args: signal_paths: List of filepaths to files containing signals.

Returns: time_values: 1D array of time values.

all_signals: Array of signals with indices [path, time, signal].

See load_signals().

modred.util.load_signals(signal_path, delimiter=None)
Loads signals from text files with columns [t signal1 signal2 . . . ].

Args: signal_paths: List of filepaths to files containing signals.

Returns: time_values: 1D array of time values.

signals: Array of signals with dimensions [time, signal].

Convenience function. Example file has format:

0 0.1 0.2
1 0.2 0.46
2 0.2 1.6
3 0.6 0.1

modred.util.lsim(A, B, C, inputs, initial_condition=None)
Simulates a discrete-time system with arbitrary inputs.

𝑥(𝑛+ 1) = 𝐴𝑥(𝑛) +𝐵𝑢(𝑛)

𝑦(𝑛) = 𝐶𝑥(𝑛)

Args: A, B, and C: State-space system arrays.

inputs: Array of inputs 𝑢, with dimensions [num_time_steps, num_inputs].

Kwargs: initial_condition: Initial condition 𝑥(0).

Returns: outputs: Array of outputs 𝑦, with dimensions [num_time_steps, num_outputs].
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D array is assumed to be zero.

modred.util.make_iterable(arg)
Checks if arg is iterable. If not, makes it a one-element list. Otherwise returns arg.

modred.util.rss(num_states, num_inputs, num_outputs)
Generates a continuous-time random state-space system.

Args: num_states: Number of states.

num_inputs: Number of inputs.

num_outputs: Number of outputs.

Returns: A, B, C: State-space arrays of continuous-time system.

By construction, all eigenvalues are real and stable.

modred.util.save_array_text(array, file_name, delimiter=None)
Saves a 1D or 2D array to a text file.

Args: array: 1D or 2D or array to save to file.

file_name: Filepath to location where data is to be saved.

Kwargs: delimiter: Delimiter in file. Default is same as numpy.savetxt.

Format of saved files is:

2.3 3.1 2.1 ...
5.1 2.2 9.8 ...
7.6 3.1 5.5 ...
0.1 1.9 9.1 ...
...

Complex data is saved in the following format (as floats):

real[0,0] imag[0,0] real[0,1] imag[0,1] ...
real[1,0] imag[1,0] real[1,1] imag[1,1] ...
...

Files can be read in Matlab with the provided functions or often with Matlab’s load.

modred.util.smart_eq(arg1, arg2)
Checks for equality, accounting for the fact that numpy’s == doesn’t return a bool. In that case, returns True
only if all elements are equal.

modred.util.sum_arrays(arr1, arr2)
Used for allreduce command.

modred.util.sum_lists(list1, list2)
Sums the elements of each list, returns a new list.

This function is used in MPI reduce commands, but could be used elsewhere too.

modred.util.svd(array, atol=1e-13, rtol=None)
Wrapper for numpy.linalg.svd, computes the singular value decomposition of an array.

Args: array: Array to take singular value decomposition of.

Kwargs: atol: Level below which singular values are truncated.

rtol: Maximum relative difference between largest and smallest singular values. Smaller ones are trun-
cated.
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Returns: U: Array whose columns are left singular vectors.

S: 1D array of singular values.

V: Array whose columns are right singular vectors.

Truncates U, S, and V such that the singular values obey both atol and rtol.
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CHAPTER 17

Release notes

17.1 modred 2.1.0

[IN PROGRESS]

Now work only with arrays! Many method names have been changed.

Implemented the total least-squares variant of DMD, which deals with noise better than standard DMD does. Also
did a major rewrite of the unit tests, which now check mathematical properties, rather than comparing the results of
modred routines to alternate (e.g., brute force) implementations. The new unit tests are more robust and fail much
less often.

New features and improvements

• Can now compute adjoint DMD modes.

Bug fixes

• hostname is now determined using a Windows-friendly method.

• OKID test files now included when installing using pip.

• Fixed some minor bugs in example files, which now run.

• Correctly handle mode_indices=None option in VecSpaceHandles.lin_combine().

• Complex-valued vectors are now correctly handled in VecSpaceHandles.
compute_inner_product_mat() and VecSpaceHandles.compute_symmetric_inner_product_mat().
[NOTE: is this fixed in the matrix versions???]

Interface changes

• inner_product is now a keyword argument in PODHandles, BPODHandles, and DMDHandles, since
sometimes instances of these classes are created to compute modes, which does not require computing any inner
products.

• Added “direct” to methods for projection coefficients in BPOD.
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• Changed symmetric to symm, i.e., VecSpaceHandles.compute_symmetric_inner_product_array()
is now VecSpaceHandles.compute_symm_inner_product_array().

• Fixed order of return arguments in DMD matrix routines [which ones were changed??] to be consistent. (Also
in TLSqrDMD matrix routines)

• Changed return arguments in array methods for all decomps. Now have a dict containing extra return arguments.

• parallel is now a module, not a class. [Also put in interface changes???] This way users don’t have to worry
about using the default instance or accidentally creating new instances.

• The attribute summed_correlation_mats has been renamed sum_correlation_mat to make it clear
that the attribute contains a single matrix. All corresponding methods have been renamed accordingly.

• Added compute_adjoint_modes for DMD, TLSqrDMD.

• Added get method for POD projection coefficients.

• Added get method for BPOD projection coefficients.

• Added get methods for DMD handles.

• Added get methods for TLSqrDMD handles.

• Added broadcast method to parallel module.

• mode_indices is now optional in the various compute modes methods

Internal changes

• Removed trailing whitespace from files, as is often done automatically when using Emacs.

• Rewrote total-least squares DMD tests.

• Rewrote DMD tests.

• Rewrote BPOD tests.

• Rewrote POD tests.

17.2 modred 2.0.4

Fixed bug for Windows environments. Updated documentation to use Read the Docs.

Bug fixes

• parallel modules now uses socket module instead of os module to find hostname, which is portable to
Windows environments.

17.3 modred 2.0.3

Minor bug fix to OKID tests.

Bug fixes

• OKID files needed for tests are included in the source distribution. All doc files are also included.
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17.4 modred 2.0.2

Minor bug fix.

Interface changes

• Order of returned values for dmd.compute_DMD_matrices_snaps_method() and dmd.
compute_DMD_matrices_direct_method() is now consistent for both values of return_all.

17.5 modred 2.0.1

Minor bug fix.

Bug fixes

• dmd.DMDHandles.compute_spectrum() now returns real numbers, as it should have before, instead of
complex values.

17.6 modred 2.0.0

Main changes are an updated interface for DMD that matches the latest theory and support for Python 3. Python 3
support was primarily implemented by Pierre Augier (pa371 [-at-] damtp [-dot-] cam [-dot-] ac [-dot-] uk). Thanks,
Pierre!

New features and improvements

• Python 3 is now supported!

• Documentation has been updated for clarity and consistency, and example code works with the latest interface.

• DMD implementation now matches newest theory, laid out in a 2014 paper by Tu et al. in
the Journal of Computational Dynamics. Features were only added, i.e., none were removed.
Any DMD computations previously done using modred can be reproduced, though the names of
some function calls have changed. Namely, dmd.DMDHandles.compute_proj_modes() replaces
dmd.DMDHandles.compute_modes(), and dmd.DMDHandles.put_eigvals() replaces dmd.
DMDHandles.put_ritz_vals(). Generally, the term “projected modes” has replaced “modes,” and sim-
ilarly “eigenvalues” has replaced “Ritz values.” “Exact modes” are now availble in addition to the projected
modes.

A full list of the new functions consists of: dmd.DMDHandles.compute_exact_modes(),
dmd.DMDHandles.compute_proj_modes(), dmd.DMDHandles.compute_spectrum(), dmd.
DMDHandles.compute_proj_coeffs(), dmd.DMDHandles.compute_eigendecomp(), dmd.
DMDHandles.put_spectral_coeffs(), and dmd.DMDHandles.put_eigvals().

• The compute_decomp step in DMD has been refactored, resulting in the new method dmd.DMDHandles.
compute_eigendecomp(). This method can be used to restart DMD computations from saved correlation
and cross-correlation matrices, or to compute a DMD using a truncated basis.

• Absolute and relative tolerances can now be passed in using the keyword arguments atol and rtol, respec-
tively, when calling compute_decomp in either POD, BPOD, or DMD. These are then passed on into internal
computations of singular value decompositions or eigendecompositions of positive definite matrices. They al-
low the user to filter out singular values or eigenvalues that should be considered numerical artifacts. They can
also be used to truncate the computations and limit the number of modes making up the decompositions.

• In DMD, truncation can also be achieved by setting the keyword argument max_num_eigvals in either
dmd.DMDHandles.compute_decomp() or dmd.DMDHandles.compute_eigendecomp().
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• Added new methods that compute the projection of the original data vectors onto the modes, for POD, BPOD,
and DMD, respectively: pod.PODHandles.compute_proj_coeffs(), bpod.BPODHandles.
compute_proj_coeffs(), bpod.BPODHandles.compute_adj_proj_coeffs(), dmd.
DMDHandles.compute_proj_coeffs().

Bug fixes

• Fixed minor bug in the function util.impulse.

• Fixed minor bug in testvectorspace.py

• Fixed minor bugs in loading/saving test files, some related to delimiters.

• Fixed bug in testutil where eig_biorthog was assuming the wrong number of return values.

• Fixed minor bugs in DMD tests related to casting of matrices/arrays.

Interface changes

• Changed the returned values in dmd.compute_DMD_matrices_snaps_method(), dmd.
compute_DMD_matrices_direct_method(), dmd.DMDHandles.compute_decomp().

• Changed the order of the returned values in pod.PODHandles.compute_decomp(). bpod.
BPODHandles.compute_decomp().

• Changed the order of the arguments in pod.PODHandles.get_decomp(), pod.PODHandles.
put_decomp(), bpod.BPODHandles.get_decomp(), bpod.BPODHandles.put_decomp(),
and era.ERA.put_decomp().

• Changed the arguments to dmd.DMDHandles.get_decomp() and dmd.DMDHandles.
put_decomp().

• Added the following new methods that compute projections onto modes: pod.PODHandles.
compute_proj_coeffs(), bpod.BPODHandles.compute_proj_coeffs(),
bpod.BPODHandles.compute_adj_proj_coeffs(), and dmd.DMDHandles.
compute_proj_coeffs().

• Added the following new methods that save projection coefficients: pod.PODHandles.
put_proj_coeffs(), bpod.BPODHandles.put_direct_proj_coeffs(), bpod.
BPODHandles.put_adjoint_proj_coeffs(), and dmd.DMDHandles.put_proj_coeffs().

• Added the following new methods in the updated DMDHandles class: dmd.
DMDHandles.compute_exact_modes(), dmd.DMDHandles.compute_spectrum(),
dmd.DMDHandles.compute_eigendecomp(), dmd.DMDHandles.
put_R_low_order_eigvecs(), dmd.DMDHandles.put_L_low_order_eigvecs(),
dmd.DMDHandles.put_correlation_mat_eigvals(), dmd.DMDHandles.
put_correlation_mat_eigvecs(), dmd.DMDHandles.put_cross_correlation_mat(),
and dmd.DMDHandles.put_spectral_coeffs().

• dmd.DMDHandles.compute_proj_modes() replaces dmd.DMDHandles.compute_modes().

• dmd.DMDHandles.put_eigvals() replaces dmd.DMDHandles.put_ritz_vals().

• dmd.DMDHandles.put_build_coeffs() and dmd.DMDHandles.put_mode_norms() are now
deprecated.

• Optional atol and rtol arguments were added to pod.PODHandles.compute_decomp(), bpod.
BPODHandles.compute_decomp(), dmd.DMDHandles.compute_decomp().

• Optional max_num_eigvals argument added to dmd.DMDHandles.compute_decomp().

• util.svd, util.eigh, and util.eig_biorthog now consistently return numpy matrices. Previously,
the SVD method returned matrices but the eigendecompositions returned arrays.
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Internal changes

• In DMD, the build coefficients are no longer considered part of the decomposition and are no longer saved as
internal attributes. Instead, its constituent parts define the decomposition (and are saved as internal attributes).
Thus computation of the build coefficients in DMD has been moved from the compute_decomp method
to the compute_exact_modes and compute_proj_modes methods, respectively, which makes more
sense mathematically.

• Added util.eig_biorthog() method to compute both left and right eigenvectors of a matrix, scaled to
yield a biorthogonal set.

• Added optional atol and rtol arguments to util.svd() and util.eigh().

• Updated tests for util.svd and util.eigh. Properties of the decompositions are now checked, rather than
simply duplicating the computations using built-in numpy methods. This allows for better testing of truncated
decompositions. Truncation levels are determined during testing, to ensure that truncation actually occurs and
is tested.

• Updated tests for util.biorthog to reduce number of failures. Some failures are to be expected due to the
fact that we test on random data, but these are much less frequent now.

• Changed how positive definite matrices are generated for use as inner product weight matrices. Previous imple-
mentation led to failed tests.

• Changed default delimiter when loading test arrays to None.

• Improved type checking to allow for any iterable container, not just lists.

• Removed dependencies on util.make_list where possible.

• Removed some duplicate code in util module, where eig_biorthog had been implemented twice.

• The packaging has been improved.

• Ported to python >= 3.3 using python-future.

• Replaced instances of xrange with range for compatability with Python 3. (In Python 3, xrange has been
renamed as range.) This is not as efficient in Python 2, but only occurs in a few places and with small enough
loops that the impact should be negligible.

• Added a few more checks for None values, as Python 3 doesn’t allow comparisons of floats to None.

17.7 modred 1.0.2

We increased the speed of the BPOD implementations.

New features and improvements

• None

Bug fixes

• None

Interface changes

• None

Internal changes

• BPOD classes now compute fewer inner products. The number of inner products is now the sum of the number
of direct vectors and the number of adjoint vectors, whereas previously it was the product. This is achieved by
taking advantage of a property of the adjoint.
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17.8 modred 1.0.1

Small changes mostly related to examples.

New features and improvements

• None

Bug fixes

• Changed a tutorial example.

Interface changes

• None

Internal changes

• None

17.9 modred 1.0.0

Many interface changes including new classes and functions for different sized data.

New features and improvements

• New functions and classes for data that fits entirely on one node’s mem-
ory. These are pod.compute_POD_matrices_snaps_method(), pod.
compute_POD_matrices_direct_method(), bpod.compute_BPOD_matrices(), dmd.
compute_DMD_matrices_snaps_method(), dmd.compute_DMD_matrices_direct_method(),
ltigalerkinproj.LTIGalerkinProjectionMatrices, and vectorspace.
VectorSpaceMatrices. These replace the in_memory member functions and improve computational
efficiency for small data.

• Added balanced truncation util.balanced_truncation().

Bug fixes

• None

Interface changes

• The old classes POD, BPOD, DMD, are now only for large data and have their names appended with “Handles”.

• Old classes LTIGalerkinProjection, and VectorSpace have been split into two, and names appended
with “Matrices” and “Handles”.

• All in_memory member functions have been removed, replaced by the functions and classes above.

• Removed the index_from optional argument in compute_modes functions. Mode numbers are now always
indexed from zero and are renamed mode indices.

• The VectorSpace member function compute_modes has been removed and its functionality moved to
lin_combine.

• LTIGalerkinProjection member function compute_model uses the result of an operator on a vec-
tor, rather than the operator itself. See ltigalerkinproj.LTIGalerkinProjectionHandles.
compute_model(). The operator classes have been removed.

Internal changes

• OKID now uses least squares instead of a pseudo-inverse for improved numerical stability.
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• Added util.InnerProductBlock for testing.

17.10 modred 0.3.2

The main change is a bug fix in util.lsim().

New features and improvements

None

Bug fixes

• Function util.lsim(), which is only provided for the user’s convenience, is simplified and corrected.

Interface changes

• util.lsim().

Internal changes

None

17.11 modred 0.3.1

The main change is a bug fix in the numpy.eigh wrapper, util.eigh().

New features and improvements

None

Bug fixes

• The POD and DMD classes now use util.eigh() with the is_positive_definite flag set to True.
This eliminates the possibility of small negative eigenvalues that sometimes appear due to numerical precision
which led to errors.

Interface changes

None

Internal changes

• Function util.eigh() now has a flag for positive definite matrices. When True, the function will automat-
ically adjust the tolerance such that only positive eigenvalues are returned.

17.12 modred 0.3.0

New features and improvements

• New class ltigalerkinproj.LTIGalerkinProjection for LTI Galerkin projections. Replaces and
generalizes old class BPODLTIROM.

• Improved print messages to print every 10 seconds and be more informative.

Bug fixes

• Corrected small error in symmetric inner product matrix calculation (used by POD and DMD) where some very
small matrix entries were double the true value.
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• Fixed race condition in vectorspace.VectorSpace.lin_combine() by adding a barrier.

Interface changes

• Removed class BPODLTIROM.

• Changed order of indices in Markov parameters returned by okid.OKID().

• Changed all uses of hankel to Hankel to be consistent with naming convention.

Internal changes

• Added parallel.Parallel.call_and_bcast() method to Parallel class.

• Changed interface of helper.add_to_path().

• dmd.DMD no longer uses an instance of pod.POD.

• The equals operator of vector handles now better deals with vectors which are numpy array objects.

17.13 modred 0.2.1

No noteworthy changes from v0.2.0, figuring out pypi website.

17.14 modred 0.2.0

First publicly available version.
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Indices and tables

• genindex

• modindex

• search
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